Part Number Hot Search : 
V421DB40 NTE2054 LTC1345I AW56W SM8141AV 3H712 ICX076AK MUR820
Product Description
Full Text Search
 

To Download PIC16F716 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PIC16F716 Data Sheet
8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM
2003 Microchip Technology Inc.
Preliminary
DS41206A
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Accuron, Application Maestro, dsPICDEM, dsPICDEM.net, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro(R) 8-bit MCUs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.
DS41206A-page ii
Preliminary
2003 Microchip Technology Inc.
PIC16F716
8-bit Flash-based Microcontroller with A/D Controller and Enhanced Capture/Compare PWM
Microcontroller Core Features:
* High-performance RISC CPU * Only 35 single-word instructions to learn - All single-cycle instructions except for program branches which are two-cycle * Operating speed: DC - 20 MHz clock input DC - 200 ns instruction cycle * Interrupt capability (up to 7 internal/external interrupt sources) * 8-level deep hardware stack * Direct, Indirect and Relative Addressing modes
Low-Power Features:
* Standby Current: - 100 nA @ 2.0V, typical * Operating Current: - 14 A @ 32 kHz, 2.0V, typical - 120 A @ 1 MHz, 2.0V, typical * Watchdog Timer Circuit: - 1 A @ 2.0V, typical * Timer1 Oscillator Current: - 3.0 A @ 32 kHz, 2.0V, typical
Special Microcontroller Features
* Power-on Reset (POR) * Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) * Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation * Dual level Brown-out Reset circuitry - 2.5 VBOR (Typical) - 4.0 VBOR (Typical) * Programmable code protection * Power saving Sleep mode * Selectable oscillator options * Fully static design * In-Circuit Serial Programming (ICSPTM)
Peripheral Features:
* Timer0: 8-bit timer/counter with 8-bit prescaler * Timer1: 16-bit timer/counter with prescaler can be incremented during Sleep via external crystal/clock * Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler * Enhanced Capture, Compare, PWM module: - Capture is 16-bit, max. resolution is 12.5 ns - Compare is 16-bit, max. resolution is 200 ns - PWM maximum resolution is 10-bit - Enhanced PWM: - Single, Half-Bridge and Full-Bridge modes - Digitally programmable dead-band delay - Auto-shutdown/restart * 8-bit multi-channel Analog-to-Digital converter * 13 I/O pins with individual direction control * Programmable weak pull-ups on PORTB
CMOS Technology
* Wide operating voltage range: - Industrial: 2.0V to 5.5V - Extended: 3.0V to 5.5V * High Sink/Source Current 25/25 mA * Wide temperature range: - Industrial: -40C to 85C - Extended: -40C to 125C
Memory Device Flash PIC16F716 2048 x 14 Data 128 x 8 13 I/O
8-bit A/D (ch) 4
Timers 8/16 2/1
PWM (outputs) 1/2/4
VDD Range 2.0V - 5.5V
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 1
PIC16F716
Pin Diagrams
18-pin PDIP, SOIC
RA2/AN2 RA3/AN3/VREF RA4/T0CKI MCLR/VPP VSS RB0/INT/ECCPAS2 RB1/T1OSO/T1CKI RB2/T1OSI RB3/CCP1/P1A 1 2 3 4 5 6 7 8 9 18 17 16 15 14 13 12 11 10 RA1/AN1 RA0/AN0 OSC1/CLKIN OSC2/CLKOUT VDD RB7/P1D RB6/P1C RB5/P1B RB4/ECCPAS0
PIC16F716
20-pin SSOP
RA2/AN2 RA3/AN3/VREF RA4/T0CKI MCLR/VPP VSS VSS RB0/INT/ECCPAS2 RB1/T1OSO/T1CKI RB2/T1OSI RB3/CCP1/P1A 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 RA1/AN1 RA0/AN0 OSC1/CLKIN OSC2/CLKOUT VDD VDD RB7/P1D RB6/P1C RB5/P1B RB4/ECCPAS0
PIC16F716
DS41206A-page 2
Preliminary
2003 Microchip Technology Inc.
PIC16F716
Table of Contents
1.0 Device Overview .......................................................................................................................................................................... 5 2.0 Memory Organization ................................................................................................................................................................... 7 3.0 I/O Ports ..................................................................................................................................................................................... 19 4.0 Timer0 Module ........................................................................................................................................................................... 27 5.0 Timer1 Module ........................................................................................................................................................................... 29 6.0 Timer2 Module ........................................................................................................................................................................... 31 7.0 Enhanced Capture/Compare/PWM (ECCP) Module.................................................................................................................. 33 8.0 Analog-to-Digital Converter (A/D) Module.................................................................................................................................. 49 9.0 Special Features of the CPU...................................................................................................................................................... 55 10.0 Instruction Set Summary ............................................................................................................................................................ 71 11.0 Development Support................................................................................................................................................................. 85 12.0 Electrical Characteristics ............................................................................................................................................................ 91 13.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 107 14.0 Packaging Information.............................................................................................................................................................. 109 Appendix A: Revision History............................................................................................................................................................. 113 Appendix B: Conversion Considerations ........................................................................................................................................... 113 Appendix C: Migration from Base-line to MID-RANGE Devices ........................................................................................................ 114 On-Line Support................................................................................................................................................................................. 115 Systems Information and Upgrade Hot Line ...................................................................................................................................... 115 Reader Response .............................................................................................................................................................................. 116 Index .................................................................................................................................................................................................. 117 Product Identification System ............................................................................................................................................................ 123
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: * Microchip's Worldwide Web site; http://www.microchip.com * Your local Microchip sales office (see last page) * The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277 When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.
Customer Notification System
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 3
PIC16F716
NOTES:
DS41206A-page 4
Preliminary
2003 Microchip Technology Inc.
PIC16F716
1.0 DEVICE OVERVIEW
This document contains device specific information for the PIC16F716. Additional information may be found in the PICmicro(R) Mid-Range Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site (www.microchip.com). The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules. Figure 1-1 is the block diagram for the PIC16F716 device. The pinouts are listed in Table 1-1.
FIGURE 1-1:
PIC16F716 BLOCK DIAGRAM
13 Program Counter Flash 2K x 14 Program Memory Data Bus 8 PORTA RA0/AN0 RA1/AN1 RA2/AN2 RA3/AN3/VREF RA4/T0CKI
8 Level Stack (13-bit)
Program Bus
RAM 128 x 8 File Registers RAM Addr(1) 9 PORTB
14 Instruction reg Direct Addr 7
Addr MUX 8 Indirect Addr
FSR reg Status reg 8 3 Power-up Timer Instruction Decode and Control OSC1/CLKIN OSC2/CLKOUT Timing Generation Oscillator Start-up Timer Power-on Reset Watchdog Timer Brown-out Reset 8 W reg ALU
RB0/INT/ECCPAS2 RB1/T1OSO/T1CKI RB2/T1OSI RB3/CCP1/P1A RB4/ECCPAS0 RB5/P1B RB6/P1C RB7/P1D
MUX
MCLR
VDD, VSS
Timer0
Timer1
Timer2
Enhanced CCP (ECCP) Note 1: Higher order bits are from the Status register.
A/D
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 5
PIC16F716
TABLE 1-1:
Name MCLR/VPP
PIC16F716 PINOUT DESCRIPTION
Function MCLR VPP Input Type Output Type ST P XTAL CMOS ST XTAL -- TTL AN TTL AN TTL AN TTL AN AN ST ST TTL ST ST TTL -- ST TTL XTAL TTL ST -- TTL ST TTL -- TTL -- TTL -- P P -- -- -- -- -- -- CMOS CMOS -- CMOS -- CMOS -- CMOS -- -- OD -- CMOS -- -- CMOS XTAL -- CMOS -- CMOS CMOS CMOS CMOS -- CMOS CMOS CMOS CMOS CMOS CMOS -- -- Description Master clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input Oscillator crystal input External clock source input RC Oscillator mode Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. Bidirectional I/O Analog Channel 0 input Bidirectional I/O Analog Channel 1 input Bidirectional I/O Analog Channel 2 input Bidirectional I/O Analog Channel 3 input A/D reference voltage input Bidirectional I/O. Open drain when configured as output. Timer0 external clock input Bidirectional I/O. Programmable weak pull-up. External Interrupt ECCP Auto-Shutdown pin Bidirectional I/O. Programmable weak pull-up. Timer1 oscillator output. Connects to crystal in Oscillator mode. Timer1 external clock input Bidirectional I/O. Programmable weak pull-up. Timer1 oscillator input. Connects to crystal in Oscillator mode. Bidirectional I/O. Programmable weak pull-up. Capture1 input, Compare1 output, PWM1 output. PWM P1A output Bidirectional I/O. Programmable weak pull-up. Interrupt-onchange. ECCP Auto-Shutdown pin Bidirectional I/O. Programmable weak pull-up. Interrupt-onchange. PWM P1B output Bidirectional I/O. Programmable weak pull-up. Interrupt-onchange. ST input when used as ICSP programming clock. PWM P1C output Bidirectional I/O. Programmable weak pull-up. Interrupt-onchange. ST input when used as ICSP programming data. PWM P1D output Ground reference for logic and I/O pins. Positive supply for logic and I/O pins. OD = Open drain ST = Schmitt Trigger input with CMOS levels CMOS = CMOS compatible input or output
OSC1/CLKIN
OSC1 CLKIN CLKIN
OSC2/CLKOUT
OSC2 CLKOUT
RA0/AN0 RA1/AN1 RA2/AN2 RA3/AN3/VREF
RA0 AN0 RA1 AN1 RA2 AN2 RA3 AN3 VREF
RA4/T0CKI RB0/INT/ECCPAS2
RA4 T0CKI RB0 INT ECCPAS2
RB1/T1OSO/T1CKI
RB1 T1OSO T1CKI
RB2/T1OSI RB3/CCP1/P1A
RB2 T1OSI RB3 CCP1 P1A
RB4/ECCPAS0
RB4 ECCPAS0
RB5/P1B
RB5 P1B
RB6/P1C
RB6 P1C
RB7/P1D
RB7 P1D
VSS VDD Legend: I = Input O = Output P = Power
VSS VDD
AN = Analog input or output TTL = TTL compatible input XTAL = Crystal
DS41206A-page 6
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.0 MEMORY ORGANIZATION
2.2 Data Memory Organization
There are two memory blocks in the PIC16F716 PICmicro(R) microcontroller device. Each block (program memory and data memory) has its own bus so that concurrent access can occur. Additional information on device memory may be found in the PICmicro(R) Mid-Range Reference Manual, (DS33023). The data memory is partitioned into multiple banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bits RP1 and RP0 of the Status register are the bank select bits. RP1:RP0(1) (status<6:5>) 00 01 10 11 Note 1: 2: Bank 0 1 2(2) 3(2)
2.1
Program Memory Organization
The PIC16F716 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F716 has 2K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wrap-around. The Reset vector is at 0000h and the interrupt vector is at 0004h.
Maintain Status bit 6 clear to ensure upward compatibility with future products. Not implemented
FIGURE 2-1:
PROGRAM MEMORY MAP AND STACK OF PIC16F716
PC<12:0>
CALL, RETURN RETFIE, RETLW
Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. The upper 16 bytes of GPR space and some "high use" Special Function Registers in Bank 0 are mirrored in Bank 1 for code reduction and quicker access.
13
Stack Level 1
Stack Level 8 Reset Vector
0000h
User Memory Space
Interrupt Vector
0004h 0005h
On-chip Program Memory 07FFh 0800h
1FFFh
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 7
PIC16F716
2.2.1 GENERAL PURPOSE REGISTER FILE FIGURE 2-2:
File Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h ADRES ADCON0 General Purpose Registers 80 Bytes 6Fh 70h 7Fh 16 Bytes Bank 0 Accesses 70-7Fh Bank 1 ADCON1 General Purpose Registers 32 Bytes CCPR1L CCPR1H CCP1CON PWM1CON ECCPAS TMR1L TMR1H T1CON TMR2 T2CON PR2 PCON PCLATH INTCON PIR1 PCLATH INTCON PIE1 INDF(1) TMR0 PCL STATUS FSR PORTA PORTB INDF(1) PCL STATUS FSR TRISA TRISB
REGISTER FILE MAP
File Address 80h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h BFh C0h EFh F0h FFh OPTION_REG 81h
The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 2.5 "Indirect Addressing, INDF and FSR Registers").
Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.
DS41206A-page 8
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.2.2 SPECIAL FUNCTION REGISTERS
The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is give in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.
TABLE 2-1:
Address 00h 01h 02h 03h 04h 05h 06h 07h-09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h-14h 15h 16h 17h 18h 19h 1Ah-1Dh 1Eh 1Fh Legend: Note 1: 2: 3: 4: 5: 6: 7: 8: Name INDF(1) TMR0 PCL(1)
SPECIAL FUNCTION REGISTER SUMMARY BANK 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR 0000 0000 xxxx xxxx 0000 0000 PD Z DC C 0001 1xxx xxxx xxxx PORTA Data Latch when written: PORTA pins when read --xx 0000 xxxx xxxx -- -- PEIE ADIF -- T0IE -- Write Buffer for the upper 5 bits of the Program Counter INTE -- RBIE -- T0IF CCP1IF INTF TMR2IF RBIF TMR1IF ---0 0000 0000 000x -0-- 0000 -- xxxx xxxx xxxx xxxx TMR1CS TMR1ON --00 0000 0000 0000 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -- xxxx xxxx xxxx xxxx CCP1M3 PDC3 PSSAC1 CCP1M2 PDC2 PSSAC0 CCP1M1 PDC1 PSSBD1 CCP1M0 PDC0 PSSBD0 0000 0000 0000 0000 00-0 0000 -- xxxx xxxx CHS2 CHS1 CHS0 GO/DONE --(7) ADON 0000 0000 49 49 34 34 33 46 46 29 29 29 31 31 17 13 15 Page 18 27 17 11 18 19 21
Addressing this location uses contents of FSR to address data memory (not a physical register) Timer0 module's register Program Counter's (PC) Least Significant Byte IRP(4) RP1(4) RP0 --(7) TO
STATUS(1) FSR
(1)
Indirect data memory address pointer -- --
(5,6)
PORTA(5,6) PORTB -- PCLATH(1,2) INTCON(1) PIR1 -- TMR1L TMR1H T1CON TMR2 T2CON -- CCPR1L CCPR1H CCP1CON PWM1CON ECCPAS -- ADRES ADCON0
PORTB Data Latch when written: PORTB pins when read Unimplemented -- GIE --
Unimplemented Holding register for the Least Significant Byte of the 16-bit TMR1 register Holding register for the Most Significant Byte of the 16-bit TMR1 register -- -- T1CKPS1 T1CKPS0 T1OSCEN T1SYNC
Timer2 module's register -- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0
Unimplemented Capture/Compare/PWM Register 1 (LSB) Capture/Compare/PWM Register 1 (MSB) P1M1 PRSEN P1M0 PDC6 DC1B1 PDC5 --(8) DC1B0 PDC4 ECCPAS0
ECCPASE ECCPAS2 Unimplemented A/D Result Register ADCS1 ADCS0
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as `0', Shaded locations are unimplemented, read as `0'. These registers can be addressed from either bank. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter. Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset. The IRP and RP1 bits are reserved. Always maintain these bits clear. On any device Reset, these pins are configured as inputs. This is the value that will be in the port output latch. Reserved bits, do not use. ECCPAS1 bit is not used on PIC16F716.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 9
PIC16F716
TABLE 2-2:
Address 80h 81h 82h 83h 84h 85h 86h 87h-89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh-91h 92h 93h-9Eh 9Fh Legend: Note 1: 2: 3: 4: 5: 6: 7: PR2 -- ADCON1
SPECIAL FUNCTION REGISTER SUMMARY BANK 1
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR 0000 0000 1111 1111 0000 0000 PD Z DC C 0001 1xxx xxxx xxxx --11 1111 1111 1111 -- -- T0IE -- Write Buffer for the upper 5 bits of the Program Counter INTE -- RBIE -- T0IF CCP1IE INTF TMR2IE RBIF TMR1IE ---0 0000 0000 000x -0-- -000 -- -- -- -- -- POR BOR ---- --qq -- 1111 1111 -- -- -- -- PCFG2 PCFG1 PCFG0 ---- -000 50 32, 36 16 17 13 14 Page 18 12 17 11 18 19 21
INDF
(1)
Addressing this location uses contents of FSR to address data memory (not a physical register) RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0
OPTION_REG PCL(1) STATUS(1) FSR(1) TRISA TRISB -- PCLATH(1,2) INTCON(1) PIE1 -- PCON --
Program Counter's (PC) Least Significant Byte IRP(4) RP1(4) RP0 --(7) TO
Indirect data memory address pointer -- -- PORTA Data Direction Register
PORTB Data Direction Register Unimplemented -- GIE -- -- PEIE ADIE
Unimplemented -- --
Unimplemented Timer2 Period Register Unimplemented -- --
x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', Shaded locations are unimplemented, read as `0'. These registers can be addressed from either bank. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter. Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset. The IRP and RP1 bits are reserved. Always maintain these bits clear. On any device Reset, these pins are configured as inputs. This is the value that will be in the port output latch. Reserved bits, do not use.
DS41206A-page 10
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.2.2.1 Status Register
The Status register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory. The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the Status register as destination may be different than intended. For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the Status register as 000u u1uu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect the Z, C or DC bits from the Status register. For other instructions, not affecting any Status bits, see the "Instruction Set Summary." Note 1: The PIC16F716 does not use bits IRP and RP1 (STATUS<7:6>). Maintain these bits clear to ensure upward compatibility with future products. 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
REGISTER 2-1:
STATUS REGISTER (ADDRESS: 03h, 83h)
R/W-0 IRP(1) bit 7 R/W-0 RP1(1) R/W-0 RP0 R-1 TO R-1 PD R/W-x Z R/W-x DC R/W-x C bit 0
bit 7
IRP: Register Bank Select bit (used for indirect addressing)(1) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) RP1(1):RP0: Register Bank Select bits (used for direct addressing) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes TO: Time-out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(2) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: 2: Reserved, maintain clear For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 6-5
bit 4
bit 3
bit 2
bit 1
bit 0
Legend: R = Readable bit -n = Value at POR
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 11
PIC16F716
2.2.2.2 OPTION_REG Register
Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer. The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.
REGISTER 2-2:
OPTION_REG REGISTER (ADDRESS: 81h)
R/W-1 RBPU bit 7 R/W-1 INTEDG R/W-1 T0CS R/W-1 T0SE R/W-1 PSA R/W-1 PS2 R/W-1 PS1 R/W-1 PS0 bit 0
bit 7
RBPU: PORTB Weak Pull-up Enable bit 1 = PORTB weak pull-ups are disabled 0 = PORTB weak pull-ups are determined by alternate function or TRISBn bit value INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin T0CS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module PS2:PS0: Prescaler Rate Select bits
Bit Value 000 001 010 011 100 101 110 111 TMR0 Rate 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 WDT Rate 1:1 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128
bit 6
bit 5
bit 4
bit 3
bit 2-0
Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
DS41206A-page 12
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.2.2.3 INTCON Register
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and external RB0/INT pin interrupts.
REGISTER 2-3:
INTCON REGISTER (ADDRESS: 0Bh, 8Bh)
R/W-0 GIE bit 7 R/W-0 PEIE R/W-0 T0IE R/W-0 INTE R/W-0 RBIE R/W-0 T0IF R/W-0 INTF R/W-x RBIF bit 0
bit 7
GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts T0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 13
PIC16F716
2.2.2.4 PIE1 Register
Note: This register contains the individual enable bits for the peripheral interrupts. Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.
REGISTER 2-4:
PIE1 REGISTER (ADDRESS: 8Ch)
U-0 -- bit 7 R/W-0 ADIE U-0 -- U-0 -- U-0 -- R/W-0 CCP1IE R/W-0 TMR2IE R/W-0 TMR1IE bit 0
bit 7 bit 6
Unimplemented: Read as `0' ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt Unimplemented: Read as `0' CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 5-3 bit 2
bit 1
bit 0
DS41206A-page 14
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.2.2.5 PIR1 Register
Note: This register contains the individual flag bits for the peripheral interrupts. Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
REGISTER 2-5:
PIR1 REGISTER (ADDRESS: 0Ch)
U-0 -- bit 7 R/W-0 ADIF U-0 -- U-0 -- U-0 -- R/W-0 CCP1IF R/W-0 TMR2IF R/W-0 TMR1IF bit 0
bit 7 bit 6
Unimplemented: Read as `0' ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete Unimplemented: Read as `0' CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 5-3 bit 2
bit 1
bit 0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 15
PIC16F716
2.2.2.6 PCON Register
Note: The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. These devices contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition. If the BOREN configuration bit is set, BOR is `1' on Power-on Reset and reset to `0' when a Brown-out condition occurs. BOR must then be set by the user and checked on subsequent resets to see if it is clear, indicating that another Brown-out has occurred. If the BOREN configuration bit is clear, BOR is unknown on Power-on Reset.
REGISTER 2-6:
PCON REGISTER (ADDRESS: 8Eh)
U-0 -- bit 7 U-0 -- U-0 -- U-0 -- U-0 -- U-0 -- R/W-0 POR R/W-q BOR bit 0
bit 7-2 bit 1
Unimplemented: Read as `0' POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) Legend: R = Readable bit -n = Value at POR q = Depends on condition W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 0
DS41206A-page 16
Preliminary
2003 Microchip Technology Inc.
PIC16F716
2.3 PCL and PCLATH
FIGURE 2-3:
PCH 12 87 PCLATH<4:0> 5 PCLATH 12 PCH 1110 PCL 87 11 Opcode <10:0> 0 GOTO, CALL PCLATH<4:3> 2 PCLATH 8
The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.
LOADING OF PC IN DIFFERENT SITUATIONS
PCL 0 Instruction with PCL as Destination ALU
2.3.1
MODIFYING PCL
Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of PCLATH register. This allows the entire contents of the program counter to be changed by first writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are then written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register. Care should be exercised when modifying the PCL register to jump into a look-up table or program branch table (computed GOTO). With PCLATH set to the table start address, if the table is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target address.
2.4
Stack
The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution. Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space, and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed. After the stack has been PUSHed 8 times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).
2.3.2
PROGRAM MEMORY PAGING
The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bit is programmed so that the desired program memory page is addressed. If a RETURN from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the RETURN instructions (which POPs the address from the stack).
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 17
PIC16F716
2.5 Indirect Addressing, INDF and FSR Registers
EXAMPLE 2-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING
0x20 FSR INDF FSR FSR,4 NEXT ;initialize pointer ;to RAM ;clear RAM & FSR ;inc pointer ;all done? ;no, clear next ;yes, continue
The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing.
NEXT
EXAMPLE 2-1:
* * * *
INDIRECT ADDRESSING
CONTINUE
MOVLW MOVWF CLRF INCF BTFSS GOTO :
Register file 05 contains the value 10h Register file 06 contains the value 0Ah Load the value 05 into the FSR register A read of the INDF register will return the value of 10h * Increment the value of the FSR register by one (FSR = 06) * A read of the INDR register now will return the value of 0Ah. Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected). A simple program to clear RAM locations 20h - 2Fh using indirect addressing is shown in Example 2-2.
An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-4. However, IRP is not used in the PIC16F716.
FIGURE 2-4:
DIRECT/INDIRECT ADDRESSING
Direct Addressing Indirect Addressing 0 IRP (2) location select 00 00h 01 80h 10 100h 11 180h bank select location select 7 FSR register 0
RP1: RP0 (2) bank select
6
from opcode
Data Memory(1)
(3)
(3)
7Fh Bank 0 Note 1: 2: 3:
FFh Bank 1
17Fh Bank 2
1FFh Bank 3
For register file map detail see Figure 2-2. Maintain clear for upward compatibility with future products. Not implemented.
DS41206A-page 18
Preliminary
2003 Microchip Technology Inc.
PIC16F716
3.0 I/O PORTS
EXAMPLE 3-1:
BCF CLRF STATUS, RP0 PORTA
INITIALIZING PORTA
; ;Initialize PORTA by ;clearing output ;data latches ;Select Bank 1 ;Value used to ;initialize data ;direction ;Set RA<3:0> as inputs ;RA<4> as outputs ;Return to Bank 0
Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. Additional information on I/O ports may be found in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
BSF MOVLW
STATUS, RP0 0xEF
3.1
PORTA and the TRISA Register
MOVWF BCF
TRISA STATUS, RP0
PORTA is a 5-bit wide bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch. Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. PORTA pins, RA3:0, are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1). Note: On a Power-on Reset, these pins are configured as analog inputs and read as `0'.
FIGURE 3-1:
BLOCK DIAGRAM OF RA3:RA0
DATA BUS
D
Q VDD VDD
WR PORT
CK
Q
P
Data Latch D WR TRIS N I/O pin
Q
CK
Q
VSS
VSS
TRIS Latch
Analog Input mode
RD TRIS
Q
D
TTL Input Buffer
The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.
EN
RD PORT
To A/D Converter
Note:
Setting RA3:0 to output while in Analog mode will force pins to output contents of data latch.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 19
PIC16F716
FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN
DATA BUS WR PORT
Data Latch D CK Q RA4/T0CKI
Q
N VSS
TRIS Latch D WR TRIS CK Q VSS
Q
Schmitt Trigger Input Buffer
RD TRIS Q D EN EN RD PORT
TMR0 Clock Input
TABLE 3-1:
Name RA0/AN0 RA1/AN1 RA2/AN2 RA3/AN3/VREF RA4/T0CKI
PORTA FUNCTIONS
Bit# bit 0 bit 1 bit 2 bit 3 bit 4 Buffer TTL TTL TTL TTL ST Function
Input/output or analog input Input/output or analog input Input/output or analog input Input/output or analog input or VREF Input/output or external clock input for Timer0 Output is open drain type Legend: TTL = TTL input, ST = Schmitt Trigger input
TABLE 3-2:
Address 05h 85h 9Fh
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 -- -- -- -- -- -- --(1) -- RA4 -- RA3 -- Bit 2 RA2 Bit 1 RA1 Bit 0 RA0 Value on POR, BOR --xx 0000 --11 1111 ---- -000 Value on all other Resets --uu uuuu --11 1111 ---- -000
PORTA TRISA ADCON1
--(1) PORTA Data Direction Register PCFG2 PCFG1 PCFG0
Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by PORTA. Note 1: Reserved bits, do not use.
DS41206A-page 20
Preliminary
2003 Microchip Technology Inc.
PIC16F716
3.2 PORTB and the TRISB Register
PORTB is an 8-bit wide bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin). PORTB pins RB7:RB0 are multiplexed with several peripheral functions (Table 3-3). When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (such as BSF, BCF, XORWF) with TRISB as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins, RB7:RB4, are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from Sleep. The user, in the interrupt service routine, can clear the interrupt in the following manner: 1. 2. Perform a read of PORTB to end the mismatch condition. Clear flag bit RBIF.
EXAMPLE 3-2:
BCF CLRF
INITIALIZING PORTB
;select Bank 0 ;Initialize PORTB by ;clearing output ;data latches ;Select Bank 1 ;Value used to ;initialize data ;direction ;Set RB<3:0> as inputs ;RB<5:4> as outputs ;RB<7:6> as inputs
STATUS, RP0 PORTB
BSF MOVLW
STATUS, RP0 0xCF
MOVWF
TRISB
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.
FIGURE 3-3:
BLOCK DIAGRAM OF RB0/INT/ECCPAS2 PIN
VDD VDD weak P pull-up
A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.
RBPU(1) DATA BUS WR PORT Data Latch D Q CK TRIS Latch D Q WR TRIS CK
RB0/ INT/ ECCPAS2 VSS
TTL Input Buffer RD TRIS Q RD PORT D EN Schmitt Trigger Buffer RD PORT ECCPAS2: ECCP Auto-shutdown input Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
RB0/INT
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 21
PIC16F716
FIGURE 3-4: BLOCK DIAGRAM OF RB1/T1OSO/T1CKI PIN
VDD T1OSCEN RBPU(1) weak P pull-up VDD DATA BUS WR PORTB Data Latch D CK Q Q RB1/T1OSO/T1CKI
TRIS Latch D WR TRISB CK Q Q VSS
RD TRISB T1OSCEN TTL Buffer Q D EN RD PORTB T1OSI (From RB2) TMR1 oscillator To Timer1 clock input ST Buffer Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
FIGURE 3-5:
BLOCK DIAGRAM OF RB2/T1OSI PIN
VDD T1OSCEN Data Latch DATA BUS WR PORTB D CK Q Q RB2/T1OSI RBPU(1) weak P pull-up VDD
TRIS Latch D WR TRISB CK Q Q VSS
RD TRIS T1OSCEN TTL Buffer Q D EN RD PORTB T1OSO (To RB1) Note 1: TMR1 Oscillator
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
DS41206A-page 22
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 3-6: BLOCK DIAGRAM OF RB3/CCP1/P1A PIN
VDD [PWMA(P1A) / CCP1 Compare] Output Enable [PWMA(P1A) / CCP1 Compare] Output RBPU(1) weak P pull-up VDD
1 RB3/CCP1/P1A 0
PWMA(P1A) Auto-shutdown tri-state Data Latch DATA BUS WR PORTB D CK Q Q VSS
TRIS Latch D WR TRISB CK Q Q
RD TRIS TTL Buffer Q D EN RD PORTB Schmitt Trigger Buffer CCP - Capture input
Note
1:
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
FIGURE 3-7:
BLOCK DIAGRAM OF RB4/ECCPAS0 PIN
VDD RBPU(1) Data Latch D Q CK TRIS Latch D Q WR TRISB CK TTL Buffer ST Buffer RD TRIS Q RD PORT Set RBIF weak P pull-up VDD
DATA BUS WR PORTB
RB4/ECCPAS0
VSS
Latch D EN Q1
From other RB7:RB4 pins
Q
D RD PORT EN Q3 Note 1: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
ECCPAS0: ECCP Auto-Shutdown input
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 23
PIC16F716
FIGURE 3-8: BLOCK DIAGRAM OF RB5/P1B PIN
VDD PWMB(P1B) Enable PWMB(P1B) Data out PWMB(P1B) Auto-shutdown tri-state Data Latch DATA BUS D Q WR PORTB CK TRIS Latch D Q WR TRISB CK Q VSS RBPU(1) weak P pull-up VDD RB5/P1B
1 0
TTL Buffer
RD TRISB Q RD PORTB Set RBIF
Latch D EN Q1
From other RB7:RB4 pins
Q
D EN RD PORTB Q3
Note
1:
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
FIGURE 3-9:
BLOCK DIAGRAM OF RB6/P1C PIN
VDD PWMC(P1C) Enable PWMC(P1C) Data out PWMC(P1C) Auto-shutdown tri-state Data Latch DATA BUS D Q WR PORTB CK TRIS Latch D Q WR TRISB CK Q ST Buffer VSS RBPU(1) weak P pull-up VDD RB6/P1C
1 0
TTL Buffer
RD TRISB Q RD PORTB Set RBIF
Latch D EN Q1
From other RB7:RB4 pins
Q
D EN RD PORTB Q3
ICSPC - In circuit serial programming clock input
Note
1:
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
DS41206A-page 24
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 3-10: BLOCK DIAGRAM OF RB7/P1D PIN
VDD PWMD(P1D) Enable PWMD(P1D) Data out PWMD(P1D) Auto-shutdown tri-state Data Latch DATA BUS D Q WR PORTB CK TRIS Latch D Q WR TRISB CK Q ST Buffer VSS RBPU(1) weak P pull-up VDD RB7/P1D
1 0
TTL Buffer
RD TRISB Q RD PORTB Set RBIF
Latch D EN Q1
From other RB7:RB4 pins
Q
D EN RD PORTB Q3
Note
1:
ICSPD - In circuit serial programming data input
To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).
TABLE 3-3:
Name RB0/INT/ ECCPAS2 RB1/T1OS0/ T1CKI
PORTB FUNCTIONS
Bit# bit 0 Buffer TTL/ST(1) Function
Input/output pin or external interrupt input. Internal software programmable weak pull-up. ECCP auto-shutdown input. Input/output pin or Timer1 oscillator output, or Timer1 clock input. Internal bit 1 TTL/ST(1) software programmable weak pull-up. See Section 5.0 "Timer1 Module" for detailed operation. RB2/T1OSI bit 2 TTL/XTAL Input/output pin or Timer1 oscillator input. Internal software programmable weak pull-up. See Section 5.0 "Timer1 Module" for detailed operation. RB3/CCP1/ bit 3 TTL/ST(1) Input/output pin or Capture1 input, or Compare1 output, or PWM A output. P1A Internal software programmable weak pull-up. See CCP1 section for detailed operation. bit 4 TTL Input/output pin (with interrupt-on-change). Internal software programmable RB4/ weak pull-up. ECCP auto-shutdown input. ECCPAS0 RB5/P1B bit 5 TTL Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. PWM B output. Input/output pin (with interrupt-on-change). Internal software programmable RB6/P1C bit 6 TTL/ST(2) weak pull-up. PWM C output. Serial programming clock. Input/output pin (with interrupt-on-change). Internal software programmable RB7/P1D bit 7 TTL/ST(2) weak pull-up. PWM D output. Serial programming data. Legend: TTL = TTL input, ST = Schmitt Trigger input, XTAL = Crystal Oscillator input Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt or peripheral input. 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 25
PIC16F716
TABLE 3-4:
Address 06h 86h 81h
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
Name Bit 7 RB7 Bit 6 RB6 Bit 5 RB5 Bit 4 RB4 Bit 3 RB3 Bit 2 RB2 Bit 1 RB1 Bit 0 RB0 Value on: POR, BOR xxxx xxxx 1111 1111 PSA PS2 PS1 PS0 1111 1111 Value on all other Resets uuuu uuuu 1111 1111 1111 1111
PORTB TRISB OPTION_REG
PORTB Data Direction Register RBPU INTEDG T0CS T0SE
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.
DS41206A-page 26
Preliminary
2003 Microchip Technology Inc.
PIC16F716
4.0 TIMER0 MODULE
4.2 Prescaler
The Timer0 module timer/counter has the following features: * * * * * * 8-bit timer/counter Readable and writable Internal or external clock select Edge select for external clock 8-bit software programmable prescaler Interrupt on overflow from FFh to 00h An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note: There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer and vice-versa.
Figure 4-1 is a simplified block diagram of the Timer0 module. Additional information on timer modules is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
The prescaler is not readable or writable. The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio. Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1,x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.
4.1
Timer0 Operation
Timer0 can operate as a timer or as a counter. Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment on every rising or falling edge of pin RA4/ T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below. When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (TOSC). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
Note:
To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.
FIGURE 4-1:
TIMER0 BLOCK DIAGRAM
Data Bus FOSC/4 0 1 1 Sync with Internal clock PSOUT (2 cycle delay) 3 T0CS(1) PS2, PS1, PS0(1) PSA(1) Set interrupt flag bit T0IF on overflow TMR0 PSOUT 8
RA4/T0CKI pin
Programmable Prescaler(2) T0SE(1)
0
Note
1: 2:
T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>). The prescaler is shared with Watchdog Timer (refer to Figure 4-2 for detailed block diagram).
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 27
PIC16F716
4.2.1 SWITCHING PRESCALER ASSIGNMENT
4.3
Timer0 Interrupt
The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). Note: To avoid an unintended device Reset, a specific instruction sequence (shown in the PICmicro(R) Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.
The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from Sleep since the timer is shut off during Sleep.
FIGURE 4-2:
CLKOUT (=FOSC/4)
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER
Data Bus 8 1 0 M U X SYNC 2 Cycles TMR0 reg
0 RA4/T0CKI pin 1 T0SE
M U X
T0CS
PSA
Set flag bit T0IF on Overflow
0 M U X
8-bit Prescaler 8 8 - to - 1MUX PS2:PS0
Watchdog Timer
1
PSA 0 MUX 1 PSA
WDT Enable bit
WDT Time-out
Note:
T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).
TABLE 4-1:
Address 01h 0Bh,8Bh 81h 85h Note 1:
REGISTERS ASSOCIATED WITH TIMER0
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR xxxx xxxx INTE T0SE Bit 4 RBIE PSA T0IF PS2 INTF PS1 RBIF PS0 0000 000x 1111 1111 --11 1111 Value on all other Resets uuuu uuuu 0000 000u 1111 1111 --11 1111
TMR0 INTCON OPTION_REG TRISA
Timer0 module's register GIE PEIE T0IE T0CS --(1)
RBPU INTEDG -- --
PORTA Data Direction Register
Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by Timer0.
Reserved bits, do not use.
DS41206A-page 28
Preliminary
2003 Microchip Technology Inc.
PIC16F716
5.0 TIMER1 MODULE
5.1 Timer1 Operation
The Timer1 module timer/counter has the following features: * 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L) * Readable and writable (Both registers) * Internal or external clock select * Interrupt on overflow from FFFFh to 0000h * Reset from ECCP module trigger Timer1 has a control register, shown in Register 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>). Figure 5-1 is a simplified block diagram of the Timer1 module. Additional information on timer modules is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023). Timer1 can operate in one of these modes: * As a timer * As a synchronous counter * As an asynchronous counter The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input. When the Timer1 oscillator is enabled (T1OSCEN is set), the RB2/T1OSI and RB1/T1OSO/T1CKI pins become inputs. That is, the TRISB<2:1> value is ignored. Timer1 also has an internal "Reset input". This Reset can be generated by the ECCP module (Section 7.0 "Enhanced Capture/Compare/PWM (ECCP) Module").
REGISTER 5-1:
T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)
U-0 -- bit 7 U-0 -- R/W-0 R/W-0 R/W-0 T1OSCEN R/W-0 R/W-0 R/W-0 bit 0 T1CKPS1 T1CKPS0 T1SYNC TMR1CS TMR1ON
bit 7-6 bit 5-4
Unimplemented: Read as '0' T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off(1) T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0 This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB1/T1OSO/T1CKI (on the rising edge after the first falling edge) 0 = Internal clock (FOSC/4) TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 Note 1: Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 3
bit 2
bit 1
bit 0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 29
PIC16F716
FIGURE 5-1:
Set flag bit TMR1IF on Overflow TMR1H
TIMER1 BLOCK DIAGRAM
TMR1 TMR1L
0 1 TMR1ON on/off T1SYNC Prescaler 1, 2, 4, 8 0 2 T1CKPS1:T1CKPS0 TMR1CS
Synchronized clock input
T1OSC RB1/T1OSO/T1CKI T1OSCEN FOSC/4 Enable Internal Oscillator(1) Clock 1
Synchronize det Sleep input
RB2/T1OSI
Note 1:
When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.
5.2
Timer1 Oscillator
A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator designed to operate with a 32.768 kHz tuning fork crystal. It will continue to run during Sleep. The user must provide a software time delay to ensure proper oscillator start-up. Note 1: Circuit guidelines for the LP oscillator (32 kHz), as shown in Section 9.2 "Oscillator Configurations", also apply to the Timer1 Oscillator. 2: The Timer1 register pair, TMR1H and TMR1L, in combination with the Timer1 overflow flag (TMR1IF) can be used as the oscillator start-up stabilization timer.
which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).
5.4
Resetting Timer1 using an ECCP Trigger Output
If the ECCP module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled). Note: The special event triggers from the ECCP module will not set interrupt flag bit TMR1IF (PIR1<0>).
Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work. In the event that a write to Timer1 coincides with a special event trigger from the ECCP, the write will take precedence. In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the period register for Timer1.
5.3
Timer1 Interrupt
The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow
TABLE 5-1:
Address 0Bh,8Bh 0Ch 8Ch 0Eh 0Fh 10h Legend: Name
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER
Bit 7 Bit 6 GIE -- -- PEIE ADIF ADIE Bit 5 T0IE -- -- Bit 4 INTE -- -- Bit 3 RBIE -- -- Bit 2 T0IF CCP1IF CCP1IE Bit 1 INTF TMR2IF TMR2IE Bit 0 RBIF TMR1IF TMR1IE Value on POR, BOR Value on all other Resets
INTCON PIR1 PIE1 TMR1L TMR1H T1CON
0000 000x 0000 000u -0-- -000 -0-- -000 -0-- -000 -0-- -000 xxxx xxxx uuuu uuuu xxxx xxxx uuuu uuuu
Holding register for the Least Significant Byte of the 16-bit TMR1 register Holding register for the Most Significant Byte of the 16-bit TMR1 register -- --
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu
x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used by the Timer1 module.
DS41206A-page 30
Preliminary
2003 Microchip Technology Inc.
PIC16F716
6.0
* * * * * *
TIMER2 MODULE
Figure 6-1 is a simplified block diagram of the Timer2 module. Additional information on timer modules is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
The Timer2 module timer has the following features: 8-bit timer (TMR2 register) 8-bit period register (PR2) Readable and writable (both registers) Software programmable prescaler (1:1, 1:4, 1:16) Software programmable postscaler (1:1 to 1:16) Interrupt on TMR2 match of PR2
Timer2 has a control register, shown in Register 6-1. Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.
REGISTER 6-1:
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)
U-0 -- bit 7 R/W-0 R/W-0 R/W-0 R/W-0 TOUTPS0 R/W-0 R/W-0 R/W-0 bit 0 TOUTPS3 TOUTPS2 TOUTPS1 TMR2ON T2CKPS1 T2CKPS0
bit 7 bit 6-3
Unimplemented: Read as `0' TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits 0000 = 1:1 Postscale 0001 = 1:2 Postscale 0010 = 1:3 Postscale 0011 = 1:4 Postscale 0100 = 1:5 Postscale 0101 = 1:6 Postscale 0110 = 1:7 Postscale 0111 = 1:8 Postscale 1000 = 1:9 Postscale 1001 = 1:10 Postscale 1010 = 1:11 Postscale 1011 = 1:12 Postscale 1100 = 1:13 Postscale 1101 = 1:14 Postscale 1110 = 1:15 Postscale 1111 = 1:16 Postscale TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 1x = Prescaler is 16 Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 2
bit 1-0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 31
PIC16F716
6.1 Timer2 Operation 6.2 Timer2 Interrupt
Timer2 can be used as the PWM time base for PWM mode of the ECCP module. The TMR2 register is readable and writable, and is cleared on any device Reset The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>). The prescaler and postscaler counters are cleared when any of the following occurs: * A write to the TMR2 register * A write to the T2CON register * Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset) TMR2 is not cleared when T2CON is written. The Timer2 module has an 8-bit Period register (PR2). Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.
FIGURE 6-1:
Sets flag bit TMR2IF TMR2 output Reset Postscaler 1:1 to 1:16 4
TIMER2 BLOCK DIAGRAM
TMR2 reg Comparator
Prescaler 1:1, 1:4, 1:16 2
FOSC/4
EQ
PR2 reg
TABLE 6-1:
Address 0Bh, 8Bh 0Ch 8Ch 11h 12h 92h Legend: Name INTCON PIR1 PIE1 TMR2 T2CON PR2
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER
Bit 7 GIE -- -- -- Bit 6 PEIE ADIF ADIE TOUTPS3 Bit 5 T0IE -- -- TOUTPS2 Bit 4 INTE -- -- TOUTPS1 Bit 3 RBIE -- -- TOUTPS0 Bit 2 T0IF CCP1IF CCP1IE TMR2ON Bit 1 INTF TMR2IF TMR2IE Bit 0 RBIF TMR1IF TMR1IE Value on POR, BOR 0000 000x -0-- -000 -0-- -000 0000 0000 T2CKPS1 T2CKPS0 -000 0000 1111 1111 Value on all other Resets 0000 000u -0-- -000 -0-- -000 0000 0000 -000 0000 1111 1111
Timer2 module's register Timer2 Period Register
x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used by the Timer2 module.
DS41206A-page 32
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE
The CCP1CON register controls ECCP operation. All the CCP1CON bits are readable and writable. Additional information on the ECCP module is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
The ECCP (Enhanced Capture/Compare/PWM) module contains a 16-bit register, which can operate as: * 16-bit Capture register * 16-bit Compare register * PWM Master/Slave Duty Cycle register Table 7-1 shows the timer resources of the ECCP module modes. Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte).
TABLE 7-1:
ECCP MODE - TIMER RESOURCE
Timer Resource Timer1 Timer1 Timer2
ECCP Mode Capture Compare PWM
REGISTER 7-1:
CCP1CON REGISTER (ADDRESS: 17h)
R/W-0 P1M1 bit 7 R/W-0 P1M0 R/W-0 DC1B1 R/W-0 DC1B0 R/W-0 CCP1M3 R/W-0 CCP1M2 R/W-0 CCP1M1 R/W-0 CCP1M0 bit 0
bit 7-6
P1M1:P1M0: PWM Output Configuration bits CCP1M<3:2> = 00, 01, 10 xx = P1A assigned as Capture/Compare I/O. P1B, P1C, P1D assigned as Port pins. CCP1M<3:2> = 11 00 = Single output, P1A modulated. P1B, P1C, P1D assigned as Port pins. 01 = Quad output forward. P1D modulated, P1A active. P1B and P1C inactive. 10 = Dual output. P1A, P1B modulated with dead-time control. P1C, P1D assigned as port pins. 11 = Quad output reverse. P1B modulated, P1C active. P1A and P1D inactive. DC1B1:DC1B0: PWM Least Significant bits Capture mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L. CCP1M3:CCP1M0: ECCP Mode Select bits 0000 = Capture/Compare/PWM off (resets ECCP module) 0001 = Unused (Reserved) 0010 = Compare mode, toggle output on match (CCP1IF bit is set) 0011 = Unused (Reserved) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set CCP1 output on match (CCP1IF bit is set) 1001 = Compare mode, clear CCP1 output on match (CCP1IF bit is set) 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) 1011 = Compare mode, trigger special event (CCP1IF bit is set, TMR1 is reset, and an A/D conversion is started if the A/D module is enabled. CCP1 pin is unaffected). 1100 = PWM mode. P1A, P1C active-high; P1B, P1D active-high. 1101 = PWM mode. P1A, P1C active-high; P1B, P1D active-low. 1110 = PWM mode. P1A, P1C active-low; P1B, P1D active-high. 1111 = PWM mode. P1A, P1C active-low; P1B, P1D active-low. Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 5-4
bit 3-0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 33
PIC16F716
7.1 Capture Mode
7.1.4 ECCP PRESCALER
In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1/P1A. An event is defined as: * * * * Every falling edge Every rising edge Every 4th rising edge Every 16th rising edge There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the ECCP module is turned off, or the ECCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter. Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.
An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost. Note: Always reset the ECCP module (CCP1M3:CCP1M0 = `0000') between changing from one capture mode to another. This is necessary to reset the internal capture counter.
EXAMPLE 7-1:
CLRF MOVLW CCP1CON NEW_CAPT_PS
CHANGING BETWEEN CAPTURE PRESCALERS
;Turn ECCP module off ;Load the W reg with ;the new prescaler ;mode value and ECCP ON ;Load CCP1CON with this ;value
MOVWF CCP1CON
FIGURE 7-1:
CAPTURE MODE OPERATION BLOCK DIAGRAM
Set flag bit CCP1IF (PIR1<2>)
7.2
Compare Mode
Prescaler 1, 4, 16 RB3/CCP1/P1A Pin and edge detect
CCPR1H Capture Enable TMR1H CCP1CON<3:0>
CCPR1L
In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1/P1A pin is either: * * * * Driven High Driven Low Toggle output (high-to-low or low-to-high) Remains Unchanged
TMR1L
Q's
7.1.1
CCP1 PIN CONFIGURATION
The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set. Changing the ECCP mode to clear output on match (CCP1M<3:0> = 1000) presets the CCP1 output latch to the logic 1 level. Changing the ECCP mode to set output on match (CCP1M<3:0> = 1001) presets the CCP1 output latch to the logic 0 level.
In Capture mode, the RB3/CCP1/P1A pin should be configured as an input by setting the TRISB<3> bit. Note: If the RB3/CCP1/P1A is configured as an output, a write to PORTB can cause a capture condition.
7.1.2
TIMER1 MODE SELECTION
Timer1 must be running in Timer mode or Synchronized Counter mode for the ECCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.
7.1.3
SOFTWARE INTERRUPT
When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.
DS41206A-page 34
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.2.1 CCP1 PIN CONFIGURATION
Note: The special event trigger from the ECCP module will not set interrupt flag bit TMR1IF (PIR1<0>). The user must configure the RB3/CCP1/P1A pin as the CCP1 output by clearing the TRISB<3> bit. Note: Clearing the CCP1CON register will force the RB3/CCP1/P1A compare output latch to the default low level. This is not the PORTB I/O data latch.
FIGURE 7-2:
COMPARE MODE OPERATION BLOCK DIAGRAM
Special Event Trigger Set flag bit CCP1IF (PIR1<2>) CCPR1H CCPR1L Q S R Output Logic Comparator TMR1H TMR1L
7.2.2
TIMER1 MODE SELECTION
RB3/CCP1/P1A Pin
Timer1 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.
match
7.2.3
SOFTWARE INTERRUPT MODE
When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).
TRISB<3> Output Enable
CCP1CON<3:0> Mode Select
Note
1:
7.2.4
SPECIAL EVENT TRIGGER
Special event trigger will reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>), and set bit GO/ DONE (ADCON0<2>) which starts an A/D conversion.
In this mode, an internal hardware trigger is generated which may be used to initiate an action. The special event trigger output of the ECCP resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1. The special event trigger output of the ECCP also starts an A/D conversion (if the A/D module is enabled).
TABLE 7-2:
Address 0Bh,8Bh 0Ch 0Eh 0Fh 10h 15h 16h 17h 86h 8Ch Legend:
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1
Name Bit 7 GIE -- Bit 6 PEIE ADIF Bit 5 T0IE -- Bit 4 INTE -- Bit 3 RBIE -- Bit 2 T0IF CCP1IF Bit 1 INTF TMR2IF Bit 0 RBIF TMR1IF Value on POR, BOR 0000 000x -0-- -000 xxxx xxxx xxxx xxxx TMR1ON --00 0000 xxxx xxxx xxxx xxxx CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 1111 1111 -- -- CCP1IE TMR2IE TMR1IE -0-- -000 Value on all other Resets 0000 000u -0-- -000 uuuu uuuu uuuu uuuu --uu uuuu uuuu uuuu uuuu uuuu 0000 0000 1111 1111 -0-- -000
INTCON PIR1 TMR1L TMR1H T1CON CCPR1L CCPR1H CCP1CON TRISB PIE1
Holding register for the Least Significant Byte of the 16-bit TMR1 register Holding register for the Most Significant Byte of the 16-bit TMR1register -- -- T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS
Capture/Compare/PWM register1 (LSB) Capture/Compare/PWM register1 (MSB) P1M1 P1M0 DC1B1 DC1B0
PORTB Data direction register -- ADIE --
x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used by Capture and Timer1.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 35
PIC16F716
7.3 PWM Mode
In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output. Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTB I/O data latch. A PWM output (Figure 7-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).
FIGURE 7-4:
PWM OUTPUT
Period = PR2+1
Figure 7-3 shows a simplified block diagram of the CCP module in PWM mode. For a step-by-step procedure on how to setup the ECCP module for PWM operation, see Section 7.3.3 "Set-Up for PWM Operation".
Duty Cycle TMR2 = PR2 TMR2 = Duty Cycle (CCPR1H) TMR2 = PR2
FIGURE 7-3:
SIMPLIFIED PWM BLOCK DIAGRAM
CCP1CON<5:4>
7.3.1
PWM PERIOD
Duty cycle registers CCPR1L
The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:
EQUATION 7-1:
CCPR1H (Slave) RB3/CCP1/P1A Comparator R Q
PWM Period = [(PR2) + 1] * 4 * Tosc * (TMR2 prescale value) PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:
TMR2
(Note 1) S TRISB<3> Clear Timer, CCP1 pin and latch D.C.
Comparator
PR2 Note 1:
* TMR2 is cleared * The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set) * The PWM duty cycle is latched from CCPR1L into CCPR1H
8-bit timer is concatenated with 2-bit internal Q clock or 2 bits of the prescaler to create 10-bit time base.
Note:
The Timer2 postscaler (see Section 6.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.
DS41206A-page 36
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.3.2 PWM DUTY CYCLE EQUATION 7-3:
log Max resolution = log(2) FOSC ( FPWM ) bits The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:
Note:
EQUATION 7-2:
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4> * TOSC * (TMR2 prescale value) CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register. The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared. Maximum PWM resolution (bits) for a given PWM frequency is given by the following equation:
If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.
For an example PWM period and duty cycle calculation, see the PICmicro(R) Mid-Range Reference Manual, (DS33023).
7.3.3
SET-UP FOR PWM OPERATION
The following steps should be taken when configuring the ECCP module for PWM operation: 1. 2. 3. 4. 5. Set the PWM period by writing to the PR2 register. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits. Make the CCP1 pin an output by clearing the TRISB<3> bit. Set the TMR2 prescale value and enable Timer2 by writing to T2CON. Configure the CCP1 module for PWM operation.
TABLE 7-3:
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz
PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz 16 0xFF 10 4 0xFF 10 1 0xFF 10 1 0x3F 8 1 0x1F 7 1 0x17 6.6
Timer Prescaler (1, 4, 16) PR2 Value Maximum Resolution (bits)
TABLE 7-4:
Address 0Bh,8Bh 0Ch 11h 12h 15h 16h 17h 86h 8Ch 92h Legend: Name INTCON PIR1 TMR2 T2CON CCPR1L CCPR1H CCP1CON TRISB PIE1 PR2
REGISTERS ASSOCIATED WITH PWM AND TIMER2
Bit 7 GIE -- Bit 6 PEIE ADIF Bit 5 T0IE -- Bit 4 INTE -- Bit 3 RBIE -- Bit 2 T0IF CCP1IF Bit 1 INTF TMR2IF Bit 0 RBIF TMR1IF Value on POR, BOR 0000 000x -0-- -000 0000 0000 T2CKPS1 T2CKPS0 -000 0000 xxxx xxxx xxxx xxxx CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 1111 1111 -- -- CCP1IE TMR2IE TMR1IE -0-- -000 1111 1111 Value on all other Resets 0000 000u -0-- -000 0000 0000 -000 0000 uuuu uuuu uuuu uuuu 0000 0000 1111 1111 -0-- -000 1111 1111
Timer2 module's register -- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON
Capture/Compare/PWM register1 (LSB) Capture/Compare/PWM register1 (MSB) P1M1 P1M0 DC1B1 DC1B0
PORB Data direction register -- ADIE --
Timer2 module's period register
x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used by PWM and Timer2.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 37
PIC16F716
7.4 ENHANCED PWM MODE
7.4.1 PWM OUTPUT CONFIGURATIONS
The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is an upwardly compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's Output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively). Figure 7-5 shows a simplified block diagram of PWM operation. All control registers are double buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Dead-band Delay, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets, instead of starting immediately. This means that enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 TOSC). As before, the user must manually configure the appropriate TRISB bits for output. The P1M1:P1M0 bits in the CCP1CON register allows one of four configurations: * * * * Single Output Half-Bridge Output Full-Bridge Output Forward mode Full-Bridge Output Reverse mode
The Single Output mode is the Standard PWM mode discussed in Section 7.3 "PWM Mode". The HalfBridge and Full-Bridge Output modes are covered in detail in the sections that follow. The general relationship of the outputs in all configurations is summarized in Figure 7-6.
FIGURE 7-5:
Duty Cycle Registers CCPR1L
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE
CCP1CON<5:4> P1M<1:0> 2 CCP1M<3:0> 4
CCP1/P1A TRISB<3> CCPR1H (Slave) P1B R Q Output Controller P1C TMR2 (Note 1) S P1D Clear Timer, set CCP1 pin and latch D.C. PWM1CON TRISB<7> TRISB<6> TRISB<5>
RB3/CCP1/P1A
RB5/P1B
Comparator
RB6/P1C
Comparator
RB7/P1D
PR2
Note
1:
The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base.
DS41206A-page 38
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 7-6:
CCP1CON <7:6>
PWM OUTPUT RELATIONSHIPS (P1A, P1B, P1C, P1D ACTIVE-HIGH STATE)
0 SIGNAL Duty Cycle Period P1A Modulated Delay(1) P1A Modulated Delay(1) PR2+1
00
(Single Output)
10
(Half-Bridge)
P1B Modulated P1A Active
01
(Full-Bridge, Forward)
P1B Inactive P1C Inactive P1D Modulated P1A Inactive
11
(Full-Bridge, Reverse)
P1B Modulated P1C Active P1D Inactive
FIGURE 7-7:
CCP1CON <7:6>
PWM OUTPUT RELATIONSHIPS (P1A, P1B, P1C, P1D ACTIVE-LOW STATE)
0 SIGNAL Duty Cycle Period P1A Modulated P1A Modulated PR2+1
00
(Single Output)
10
(Half-Bridge)
Delay(1) P1B Modulated P1A Active
Delay(1)
01
(Full-Bridge, Forward)
P1B Inactive P1C Inactive P1D Modulated P1A Inactive
11
(Full-Bridge, Reverse)
P1B Modulated P1C Active P1D Inactive
Relationships: * Period = 4 * TOSC * (PR2 + 1) * (TMR2 prescale value) * Duty Cycle = TOSC * (CCPR1L<7:0> : CCP1CON<5:4>) * (TMR2 prescale value) * Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 7.4.4 "Programmable Dead-Band Delay").
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 39
PIC16F716
FIGURE 7-8:
CCP1CON <7:6>
PWM OUTPUT RELATIONSHIPS (P1A, P1C ACTIVE-HIGH. P1B, P1D ACTIVE-LOW)
0 SIGNAL Duty Cycle Period P1A Modulated Delay(1) P1A Modulated Delay(1) PR2+1
00
(Single Output)
10
(Half-Bridge)
P1B Modulated P1A Active
01
(Full-Bridge, Forward)
P1B Inactive P1C Inactive P1D Modulated P1A Inactive
11
(Full-Bridge, Reverse)
P1B Modulated P1C Active P1D Inactive
DS41206A-page 40
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 7-9:
CCP1CON <7:6>
PWM OUTPUT RELATIONSHIPS (P1A, P1C ACTIVE-LOW. P1B, P1D ACTIVE-HIGH)
0 SIGNAL Duty Cycle Period P1A Modulated P1A Modulated PR2+1
00
(Single Output)
10
(Half-Bridge)
Delay(1) P1B Modulated P1A Active
Delay(1)
01
(Full-Bridge, Forward)
P1B Inactive P1C Inactive P1D Modulated P1A Inactive
11
(Full-Bridge, Reverse)
P1B Modulated P1C Active P1D Inactive
Relationships: * Period = 4 * TOSC * (PR2 + 1) * (TMR2 prescale value) * Duty Cycle = TOSC * (CCPR1L<7:0> : CCP1CON<5:4>) * (TMR2 prescale value) * Delay = 4 * TOSC * (PWM1CON<6:0>) Note 1: Dead-band delay is programmed using the PWM1CON register (Section 7.4.4 "Programmable Dead-Band Delay").
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 41
PIC16F716
7.4.2 HALF-BRIDGE MODE
In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the RB3/CCP1/P1A pin, while the complementary PWM output signal is output on the RB5/P1B pin (Figure 7-12). This mode can be used for half-bridge applications, as shown in Figure 7-11 or for full-bridge applications, where four power switches are being modulated with two PWM signals. In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in half-bridge power devices. The value of PWM1CON bits PDC6:PDC0 sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 7.4.4 "Programmable DeadBand Delay" for more details of the dead-band delay operations. Since the P1A and P1B outputs are multiplexed with the PORTB<3> and PORTB<5> data latches, the TRISB<3> and TRISB<5> bits must be cleared to configure P1A and P1B as outputs.
FIGURE 7-10:
Period Duty Cycle P1A
(2)
HALF-BRIDGE PWM OUTPUT
Period
td P1B(2)
(1)
td
(1)
(1)
td = Dead-band Delay Note 1: 2: At this time, the TMR2 register is equal to the PR2 register. Output signals are shown as active-high.
FIGURE 7-11:
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS
V+
Standard Half-Bridge Circuit ("Push-Pull") PIC16F716 P1A FET Driver
+ V Load
FET Driver P1B
+ V -
Half-Bridge Output Driving a Full-Bridge Circuit V+ PIC16F716 FET Driver P1A
V-
FET Driver
FET Driver P1B
Load
FET Driver
V-
DS41206A-page 42
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.4.3 FULL-BRIDGE MODE
In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin RB3/CCP1/P1A is continuously active, and pin RB7/P1D is modulated. In the Reverse mode, RB6/P1C pin is continuously active, and RB5/P1B pin is modulated. These are illustrated in Figure 7-6 through Figure 7-9. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTB<3> and PORTB<5:7> data latches. The TRISB<3> and TRISB<5:7> bits must be cleared to make the P1A, P1B, P1C, and P1D pins output.
FIGURE 7-12:
EXAMPLE OF FULL-BRIDGE APPLICATION
V+
PIC16F716 P1A
FET Driver
QA
QC
FET Driver
P1B FET Driver
Load FET Driver
P1C
QB
QD
VP1D
7.4.3.1
Direction Change in Full-Bridge Mode
Note:
In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the Forward/Reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle. Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4*TOSC*(Timer2 Prescale value)) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPSx bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 7-13.
In the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true: 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%. 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 43
PIC16F716
Figure 7-14 shows an example where the PWM direction changes from forward to reverse, at a near 100% duty cycle. At time t1, the output P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices QC and QD (see Figure 7-12) for the duration of `t'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward. If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met: 1. 2. Reduce PWM for a PWM period before changing directions. Use switch drivers that can drive the switches off faster than they can drive them on.
Other options to prevent shoot-through current may exist.
FIGURE 7-13:
SIGNAL
PWM DIRECTION CHANGE
Period(1) Period
P1A (Active-High) P1B (Active-High) DC P1C (Active-High) P1D (Active-High) DC (Note 2)
Note 1: 2:
The direction bit in the CCP1 Control Register (CCP1CON<7>) is written any time during the PWM cycle. When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals are inactive at this time.
FIGURE 7-14:
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE
Forward Period t1 Reverse Period
P1A P1B P1C P1D DC
DC ton
External Switch C toff External Switch D Potential Shoot-Through Current Note 1: 2: 3: All signals are shown as active-high. ton is the turn-on delay of power switch QC and its driver. toff is the turn-off delay of power switch QD and its driver. t = toff - ton
DS41206A-page 44
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.4.4 PROGRAMMABLE DEAD-BAND DELAY 7.4.5 ENHANCED PWM AUTO-SHUTDOWN
In half-bridge applications where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shootthrough current) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off. In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shootthrough current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 7-10 for illustration. The lower seven bits of the PWM1CON register (Register 7-2) sets the delay period in terms of microcontroller instruction cycles (TCY or 4 TOSC). When the ECCP is programmed for any of the enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the enhanced PWM output pins into a defined shutdown state when a shutdown event occurs. A shutdown event can be caused by a logic low level on either or both of the RB0/INT/ECCPAS2 or RB4/ ECCPAS0 pins. The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS2 and ECCPAS0 bits (ECCPAS<6> and ECCPAS<4>). When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits (ECCPAS<3:0>). Each pin pair (P1A/P1C and P1B/P1D) may be set to drive high, drive low, or be tri-stated (not driving). The ECCPASE bit (ECCPAS<7>) is also set to hold the enhanced PWM outputs in their shutdown states. The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit must be cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared. If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period. Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 45
PIC16F716
REGISTER 7-2: PWM1CON: PWM CONFIGURATION REGISTER (ADDRESS: 18h)
R/W-0 PRSEN bit 7 bit 7 R/W-0 PDC6 R/W-0 PDC5 R/W-0 PDC4 R/W-0 PDC3 R/W-0 PDC2 R/W-0 PDC1 R/W-0 PDC0 bit 0
PRSEN: PWM Restart Enable bit 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically. 0 = Upon auto-shutdown, ECCPASE must be cleared in firmware to restart the PWM. PDC<6:0>: PWM Delay Count bits Number of FOSC/4 (4*TOSC) cycles between the scheduled time when a PWM signal should transition active, and the actual time it transitions active. Legend: R = Readable bit - n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 6-0
REGISTER 7-3:
ECCPAS - ENHANCED CCP AUTO SHUT DOWN REGISTER (ADDRESS: 19h)
R/W-0 bit 7 R/W-0 U-0 -- R/W-0 ECCPAS0 R/W-0 PSSAC1 R/W-0 PSSAC0 R/W-0 PSSBD1 R/W-0 PSSBD0 bit 0 ECCPASE ECCPAS2
bit 7
ECCPASE: ECCP Auto-Shutdown Event Status bit 1 = A shutdown event has occurred. Must be reset in firmware to re-enable ECCP if PRSEN = 0 0 = ECCP outputs enabled, no shutdown event ECCPAS2: ECCP Auto-Shutdown bit 2 1 = RB0 (INT) pin low level (`0') causes shutdown 0 = RB0 (INT) pin has no effect on ECCP Unimplemented: Read as `0' ECCPAS0: ECCP Auto-Shutdown bit `0' 1 = RB4 pin low level (`0') causes shutdown 0 = RB4 pin has no effect on ECCP PSSAC<1:0>: Pin P1A and P1C Shutdown State Control 00 = Drive Pins P1A and P1C to `0' 01 = Drive Pins P1A and P1C to `1' 1x = Pins P1A and P1C tri-state PSSBD<1:0>: Pin P1B and P1D Shutdown State Control 00 = Drive Pins P1B and P1D to `0' 01 = Drive Pins P1B and P1D to `1' 1x = Pins P1B and P1D tri-state Legend: R = Readable bit - n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 6
bit 5 bit 4
bit 3-2
bit 1-0
DS41206A-page 46
Preliminary
2003 Microchip Technology Inc.
PIC16F716
7.4.5.1 Auto-Shutdown and Automatic Restart 7.4.6 START-UP CONSIDERATIONS
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the PRSEN bit of the PWM1CON register (PWM1CON<7>). In Shutdown mode with PRSEN = 1 (PWM1CON <7>) (Figure 7-15), the ECCPASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCPASE bit is cleared. If PRSEN = 0 (Figure 7-16), once a shutdown condition occurs, the ECCPASE bit will remain set until it is cleared by firmware. Once ECCPASE is cleared, the enhanced PWM will resume at the beginning of the next PWM period. Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active. When the ECCP module is used in the PWM mode, the application hardware must use the proper external pullup and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the off state, until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s). The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended since it may result in damage to the application circuits. The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP module may cause damage to the application circuit. The ECCP module must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.
The ECCPASE bit cannot be cleared as long as the cause of the shutdown persists. The Auto-shutdown mode can be forced by writing a '1' to the ECCPASE bit.
FIGURE 7-15:
Shutdown Event ECCPASE bit PWM Activity
PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)
PWM Period
Normal PWM Start of PWM Period Shutdown Shutdown Event Occurs Event Clears PWM Resumes
FIGURE 7-16:
PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)
PWM Period
Shutdown Event ECCPASE bit PWM Activity Normal PWM Start of PWM Period ECCPASE Cleared by Shutdown Shutdown Firmware PWM Event Occurs Event Clears Resumes
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 47
PIC16F716
7.4.7 SETUP FOR PWM OPERATION
8. Configure and start TMR2: * Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit (PIR1<1>). * Set the TMR2 prescale value by loading the T2CKPSx bits (T2CON<1:0>). * Enable Timer2 by setting the TMR2ON bit (T2CON<2>). 9. Enable PWM outputs after a new PWM cycle has started: * Wait until TMR2 overflows (TMR2IF bit is set). * Enable the CCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRISB bits. * Clear the ECCPASE bit (ECCPAS<7>). See the previous section for additional details. The following steps should be taken when configuring the ECCP module for PWM operation: 1. Configure the PWM pins P1A and P1B (and P1C and P1D, if used) as inputs by setting the corresponding TRISB bits. Set the PWM period by loading the PR2 register. Configure the ECCP module for the desired PWM mode and configuration by loading the CCP1CON register with the appropriate values: * Select one of the available output configurations and direction with the P1M1:P1M0 bits. * Select the polarities of the PWM output signals with the CCP1M3:CCP1M0 bits. 4. 5. Set the PWM duty cycle by loading the CCPR1L register and CCP1CON<5:4> bits. For Half-Bridge Output mode, set the deadband delay by loading PWM1CON<6:0> with the appropriate value. If auto-shutdown operation is required, load the ECCPAS register. * Select the auto-shutdown sources using the ECCPAS<2> AND ECCPAS<0> bits. * Select the shutdown states of the PWM output pins using PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits. * Set the ECCPASE bit (ECCPAS<7>). 7. If auto-restart operation is required, set the PRSEN bit (PWM1CON<7>).
2. 3.
7.4.8
EFFECTS OF A RESET
6.
Both Power-on and subsequent Resets will force all ports to Input mode and the ECCP registers to their Reset states. This forces the Enhanced CCP module to reset to a state compatible with the standard ECCP module.
TABLE 7-5:
Address 0Bh 0Ch 8Ch 11h 92h 12h 86h 16h 15h 17h 19h 18h Legend: Name INTCON PIR1 PIE1 TMR2 PR2 T2CON TRISB CCPR1H CCPR1L CCP1CON ECCPAS PWM1CON
REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2
Bit 7 GIE -- -- Bit 6 PEIE ADIF ADIE Bit 5 TMR0IE -- -- Bit 4 INT0IE -- -- Bit 3 RBIE -- -- Bit 2 TMR0IF CCP1IF CCP1IE Bit 1 INT0IF TMR2IF TMR2IE Bit 0 RBIF TMR1IF TMR1IE Value on POR, BOR Value on all other Resets
0000 000x 0000 000u -0-- -000 -0-- -000 -0-- --00 -0-- --00 0000 0000 0000 0000 1111 1111 1111 1111
Timer2 Module Register Timer2 Module Period Register -- TOUTPS3 TOUTPS2
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000 1111 1111 1111 1111 xxxx xxxx uuuu uuuu xxxx xxxx uuuu uuuu CCP1M3 PSSAC1 PDC3 CCP1M2 PSSAC0 PDC2 CCP1M1 PSSBD1 PDC1 CCP1M0 0000 0000 0000 0000 PSSBD0 00-0 0000 00-0 0000 PDC0 0000 0000 0000 0000
PORTB Data Direction Register Enhanced Capture/Compare/PWM Register1 High Byte Enhanced Capture/Compare/PWM Register1 Low Byte P1M1 ECCPASE PRSEN P1M0 ECCPAS2 PDC6 DC1B1 -- PDC5 DC1B0 ECCPAS0 PDC4
x = unknown, u = unchanged, - = unimplemented, read as `0'. Shaded cells are not used by the ECCP module in enhanced PWM mode.
DS41206A-page 48
Preliminary
2003 Microchip Technology Inc.
PIC16F716
8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE
Additional information on the A/D module is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023). The A/D module has three registers. These registers are: * A/D Result Register (ADRES) * A/D Control Register 0 (ADCON0) * A/D Control Register 1 (ADCON1) A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion is aborted. The ADCON0 register, shown in Register 8-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.
The Analog-to-Digital (A/D) Converter module has four inputs. The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/ AN3/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.
REGISTER 8-1:
ADCON0 REGISTER (ADDRESS: 1Fh)
R/W-0 ADCS1 bit 7 R/W-0 ADCS0 R/W-0 CHS2 R/W-0 CHS1 R/W-0 CHS0 R/W-0 GO/DONE R/W-0 -- R/W-0 ADON bit 0
bit 7-6
ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = FOSC/2 01 = FOSC/8 10 = FOSC/32 11 = FRC (Clock derived from the internal ADC RC oscillator) CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 1xx = reserved, do not use GO/DONE: A/D Conversion Status bit If ADON = 1 1 = A/D conversion in progress (Setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete) Reserved: Maintain this bit as '0' ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
bit 5-3
bit 2
bit 1 bit 0
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 49
PIC16F716
REGISTER 8-2: ADCON1 REGISTER (ADDRESS: 9Fh)
U-0 -- bit 7 bit 7-3 bit 2-0 Unimplemented: Read as '0' PCFG2:PCFG0: A/D Port Configuration Control bits
PCFG2:PCFG0 0x0 0x1 100 101 11x Legend: AN3 RA3 A VREF A VREF D AN2 RA2 A A D D D AN2 RA1 A A A A D AN0 RA0 A A A A D VREF VDD RA3 VDD RA3 VDD
U-0 --
U-0 --
U-0 --
U-0 --
R/W-0 PCFG2
R/W-0 PCFG1
R/W-0 PCFG0 bit 0
A = Analog input, D = Digital I/O
Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = Bit is set 1. U = Unimplemented bit, read as `0' `0' = Bit is cleared x = Bit is unknown
The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 8-1. The value that is in the ADRES register is not modified for any Reset. The ADRES register will contain unknown data after a Power-on Reset. After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 8.1 "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:
2.
3. 4. 5.
Configure the A/D module: - Configure analog pins/voltage reference/ and digital I/O (ADCON1) - Select A/D input channel (ADCON0) - Select A/D conversion clock (ADCON0) - Turn on A/D module (ADCON0) Configure A/D interrupt (if desired): - Clear ADIF bit - Set ADIE bit - Set GIE bit Wait the required acquisition time. Start conversion: - Set GO/DONE bit (ADCON0) Wait for A/D conversion to complete, by either: - Polling for the GO/DONE bit to be cleared OR - Waiting for the A/D interrupt Read A/D Result register (ADRES), clear bit ADIF if required. For the next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.
6. 7.
DS41206A-page 50
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 8-1: A/D BLOCK DIAGRAM
CHS2:CHS0 VIN (Input voltage) 011 010 A/D Converter 001 RA1/AN1 VDD VREF (Reference voltage) PCFG2:PCFG0 000 or 010 or 100 or 110 or 111 001 or 011 or 101 000 RA0/AN0 RA2/AN2 RA3/AN3/VREF
8.1
A/D Acquisition Requirements
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-2. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k. After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.
To calculate the minimum acquisition time, TACQ, see the PICmicro(R) Mid-Range Reference Manual, (DS33023). This equation calculates the acquisition time to within 1/2 LSb error. The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy. Note: When the conversion is started, the holding capacitor is disconnected from the input pin.
FIGURE 8-2:
ANALOG INPUT MODEL
VDD VT = 0.6V RIC 1k Sampling Switch SS RSS CHOLD = DAC capacitance = 51.2 pF VSS Legend: CPIN = input capacitance VT = threshold voltage I leakage = leakage current at the pin due to various junctions RIC SS CHOLD = interconnect resistance = sampling switch = sample/hold capacitance (from DAC)
Rs
ANx
VA
CPIN 5 pF
VT = 0.6V
I leakage 500 nA
6V 5V VDD 4V 3V 2V
5 6 7 8 9 10 11 Sampling Switch (k)
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 51
PIC16F716
8.2 Selecting the A/D Conversion Clock 8.3 Configuring Analog Port Pins
The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits. Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy. 2: Analog levels on any pin that is defined as a digital input (including the AN3:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.
The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are: * * * * 2 TOSC 8 TOSC 32 TOSC Internal RC oscillator
For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 s. Table 8-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.
TABLE 8-1:
Operation 2 TOSC 8 TOSC 32 TOSC RC Legend: Note 1: 2: 3: 4:
TAD vs. DEVICE OPERATING FREQUENCIES
Device Frequency 20 MHz 100 ns(2) 400 ns(2) 1.6 s 5 MHz 400 ns(2) 1.6 s 6.4 s 1.25 MHz 1.6 s 6.4 s 25.6 s(3) 333.33 kHz 6 s 24 s(3) 96 s(3) ADCS1:ADCS0 00 01 10
AD Clock Source (TAD)
11 2-6 s(1), (4) 2-6 s(1), (4) 2-6 s(1), (4) 2-6 s(1) Shaded cells are outside of recommended range. The RC source has a typical TAD time of 4 s. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for Sleep operation only.
DS41206A-page 52
Preliminary
2003 Microchip Technology Inc.
PIC16F716
8.4
Note:
A/D Conversions
The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.
8.5
Use of the ECCP Trigger
An A/D conversion can be started by the "special event trigger" of the ECCP module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as `1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/ DONE bit (starts a conversion). If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.
TABLE 8-2:
Address 05h 0Bh,8Bh 0Ch 1Eh 1Fh 85h 8Ch 9Fh Legend: Note 1: Name PORTA INTCON PIR1 ADRES ADCON0 TRISA PIE1 ADCON1
SUMMARY OF A/D REGISTERS
Bit 7 -- GIE -- ADCS1 -- -- -- Bit 6 -- PEIE ADIF ADCS0 -- ADIE -- Bit 5 --(1) T0IE -- CHS2 --
(1)
Bit 4 RA4 INTE -- CHS1 -- --
Bit 3 RA3 RBIE -- CHS0 -- --
Bit 2 RA2 T0IF CCP1IF GO/DONE CCP1IE PCFG2
Bit 1 RA1 INTF TMR2IF --(1) TMR2IE PCFG1
Bit 0 RA0 RBIF TMR1IF ADON TMR1IE PCFG0
Value on POR, BOR --xx 0000 0000 000x -0-- -000 xxxx xxxx 0000 0000 --11 1111 -0-- -000 ---- -000
Value on all other Resets --uu uuuu 0000 000u -0-- -000 uuuu uuuu 0000 0000 --11 1111 -0-- 0000 ---- -000
A/D Result Register PORTA Data Direction Register
-- --
x = unknown, u = unchanged, - = unimplemented read as `0'. Shaded cells are not used for A/D conversion. Reserved bit, do not use.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 53
PIC16F716
NOTES:
DS41206A-page 54
Preliminary
2003 Microchip Technology Inc.
PIC16F716
9.0 SPECIAL FEATURES OF THE CPU
9.1 Configuration Bits
The configuration bits can be programmed (read as `0') or left unprogrammed (read as `1') to select various device configurations. These bits are mapped in program memory location 2007h. The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h - 3FFFh), which can be accessed only during programming.
The PIC16F716 device has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are: * OSC Selection * Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) * Interrupts * Watchdog Timer (WDT) * Sleep * Code protection * ID locations * In-Circuit Serial ProgrammingTM (ICSPTM) The PIC16F716 device has a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options. Additional information on special features is available in the PICmicro(R) Mid-Range Reference Manual, (DS33023).
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 55
PIC16F716
REGISTER 9-1:
CP bit 13 bit 13 CP: Flash Program Memory Code Protection bit 1 = Code protection off 0 = All program memory code protected Unimplemented: Read as `1' BORV: Brown-out Reset Voltage bit 1 = VBOR set to 4.0V 0 = VBOR set to 2.5V BOREN: Brown-out Reset Enable bit(1) 1 = BOR enabled 0 = BOR disabled Unimplemented: Read as `1' PWRTE: Power-up Timer Enable bit (1) 1 = PWRT disabled 0 = PWRT enabled WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator -- --
CONFIGURATION WORD
-- -- -- BORV BOREN -- -- PWRTE WDTE FOSC1 FOSC0 bit 0
bit 12-8 bit 7
bit 6
bit 5-4 bit 3
bit 2
bit 1-0
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer (PWRTE).
Legend: R = Readable bit -n = Value at POR W = Writable bit `1' = bit is set U = Unimplemented bit, read as `0' `0' = bit is cleared x = bit is unknown
DS41206A-page 56
Preliminary
2003 Microchip Technology Inc.
PIC16F716
9.2
9.2.1
Oscillator Configurations
OSCILLATOR TYPES
TABLE 9-1:
Mode XT HS
CERAMIC RESONATORS
Ranges Tested: Freq OSC1 (C1) OSC2 (C2)
The PIC16F716 can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes: * * * * LP - Low-power Crystal XT - Crystal/Resonator HS - High-speed Crystal/Resonator RC - Resistor/Capacitor
Note 1:
455 kHz 68-100 pF 68-100 pF 2.0 MHz 15-68 pF 15-68 pF 4.0 MHz 10-68 pF 10-68 pF 8.0 MHz 15-68 pF 15-68 pF 16.0 MHz 10-22 pF 10-22 pF These values are for design guidance only. See notes at bottom of page.
9.2.2
CRYSTAL OSCILLATOR/CERAMIC RESONATORS
TABLE 9-2:
Osc Type LP XT
CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR
Crystal Freq 32 kHz 200 kHz 200 kHz 1 MHz 4 MHz Cap. Range C1 15-33 pF 5-10 pF 47-68 pF 15-33 pF 15-33 pF 15-33 pF 15-33 pF 15-33 pF Cap. Range C2 15-33 pF 5-10 pF 47-68 pF 15-33 pF 15-33 pF 15-33 pF 15-33 pF 15-33 pF
In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 9-1). The PIC16F716 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 9-2).
HS
4 MHz 8 MHz 20 MHz
FIGURE 9-1:
CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)
OSC1 To internal logic
Note 1:
These values are for design guidance only. See notes at bottom of page.
C1(1)
Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 3: RS may be required to avoid overdriving crystals with low drive level specification. 4: When using an external clock for the OSC1 input, loading of the OSC2 pin must be kept to a minimum by leaving the OSC2 pin unconnected.
XTAL OSC2 RS(2) C2(1) Note 1: 2: 3:
RF(3) Sleep PIC16F716
See Table 9-1 and Table 9-2 for recommended values of C1 and C2. A series resistor (RS) may be required. RF varies with the crystal chosen.
FIGURE 9-2:
EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)
OSC1 PIC16F716 Open OSC2
Clock from ext. system
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 57
PIC16F716
9.2.3 RC OSCILLATOR
For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 9-3 shows how the R/C combination is connected to the PIC16F716. A simplified block diagram of the On-chip Reset circuit is shown in Figure 9-5. The PICmicro(R) microcontrollers have an MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive the MCLR pin low.
9.4
Power-On Reset (POR)
FIGURE 9-3:
VDD REXT
RC OSCILLATOR MODE
A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (parameter D004). For a slow rise time, see Figure 9-4. When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.
OSC1 CEXT VSS FOSC/4 Recommended values: 3 k REXT 100 k (VDD 3.0V) 10 k REXT 100 k (VDD 3.0V) CEXT > 20 pF OSC2/CLKOUT
Internal clock PIC16F716
FIGURE 9-4:
EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)
VDD VDD R R1 MCLR C PIC16F716
9.3
Reset
The PIC16F716 differentiates between various kinds of Reset: * * * * * * Power-on Reset (POR) MCLR Reset during normal operation MCLR Reset during Sleep WDT Reset (during normal operation) WDT Wake-up (during Sleep) Brown-out Reset (BOR)
Note 1:
2:
Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-6 for a full description of Reset states of all registers.
External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. R < 40 k is recommended to make sure that voltage drop across R does not violate the device's electrical specification. R1 = 100 to 1 k will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).
3:
DS41206A-page 58
Preliminary
2003 Microchip Technology Inc.
PIC16F716
9.5 Power-up Timer (PWRT) 9.7
The Power-up Timer provides a fixed nominal time-out, on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. The power-up timer enable configuration bit, PWRTE, is provided to enable/disable the PWRT. The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.
Programmable Brown-Out Reset (PBOR)
The PIC16F716 has on-chip Brown-out Reset circuitry. A configuration bit, BOREN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. The BORV configuration bit selects the programmable Brown-out Reset threshold voltage (VBOR). When BORV is 1, VBOR IS 4.0V. When BORV is 0, VBOR is 2.5V A Brown-out Reset occurs when VDD falls below VBOR for a time greater than parameter TBOR (see Table 12-4). A Brown-out Reset is not guaranteed to occur if VDD falls below VBOR for less than parameter TBOR. On any Reset (Power-on, Brown-out, Watchdog, etc.) the chip will remain in Reset until VDD rises above VBOR. The Power-up Timer will be invoked and will keep the chip in Reset an additional 72 ms only if the Power-up Timer enable bit in the configuration register is set to 0 (PWRTE = 0). If the Power-up Timer is enabled and VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 72 ms Reset. See Figure 9-6. For operations where the desired brown-out voltage is other than 4.0V or 2.5V, an external brown-out circuit must be used. Figure 9-8, Figure 9-9 and Figure 9-10 show examples of external Brown-out Protection circuits.
9.6
Oscillator Start-up Timer (OST)
The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized. See AC parameters for details. The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 59
PIC16F716
FIGURE 9-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
External Reset MCLR WDT Module VDD rise detect VDD Brown-out Reset OST/PWRT OST 10-bit Ripple counter OSC1 (1) On-chip RC OSC PWRT 10-bit Ripple counter R Q Chip_Reset Power-on Reset S Sleep WDT Time-out Reset
BOREN
PWRTE See Table 9-3 for time-out situations. Enable OST
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.
FIGURE 9-6:
BROWN-OUT SITUATIONS (PWRTE = 0
VDD
VBOR
Internal Reset VDD
72 ms
VBOR
Internal Reset
<72 ms
72 ms
VDD
VBOR
Internal Reset
72 ms
DS41206A-page 60
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 9-7:
VDD 33k Q1 10k 40k MCLR PIC16F716 Vss RST
EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1
VDD
FIGURE 9-9:
VDD MCP809
EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3
bypass capacitor
VDD
VDD MCLR PIC16F716
Note 1: This circuit will activate Reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage. 2: Internal Brown-out Reset circuitry should be disabled when using this circuit.
Note 1:
FIGURE 9-8:
VDD R1
EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2
VDD Q1 MCLR
This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both high and low active Reset pins. There are 7 different trip point selections to accommodate 5V and 3V systems.
R2
40k
PIC16F716
Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that: R1 VDD x R1 + R2 = 0.7 V
2: Internal Brown-out Reset should be disabled when using this circuit. 3: Resistors should be adjusted for the characteristics of the transistor.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 61
PIC16F716
9.8 Time-out Sequence 9.9
On power-up, the time-out sequence is as follows: First PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-10, Figure 9-11, and Figure 9-12 depict time-out sequences on power-up. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 9-12). This is useful for testing purposes or to synchronize more than one PIC16F716 device operating in parallel. Table 9-5 shows the Reset conditions for some special function registers, while Table 9-6 shows the Reset conditions for all the registers.
Power Control/Status Register (PCON)
The Power Control/Status Register, PCON has two bits. Bit 0 is the Brown-out Reset Status bit, BOR. If the BOREN configuration bit is set, BOR is `1' on Power-on Reset and reset to `0' when a Brown-out condition occurs. BOR must then be set by the user and checked on subsequent resets to see if it is clear, indicating that another Brown-out has occurred. If the BOREN configuration bit is clear, BOR is unknown on Power-on Reset. Bit 1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.
TABLE 9-3:
TIME-OUT IN VARIOUS SITUATIONS
Power-up or Brown-out Wake-up from Sleep PWRTE = 0 PWRTE = 1 1024 TOSC -- 1024 TOSC -- 72 ms + 1024 TOSC 72 ms
Oscillator Configuration XT, HS, LP RC
TABLE 9-4:
POR 0 0 0 0 1 1 1 1 1 BOR x 1 x x 0 1 1 1 1
STATUS BITS AND THEIR SIGNIFICANCE
TO 1 1 0 x 1 0 0 u 1 PD 1 1 x 0 1 1 0 u 0 Power-on Reset (BOREN = 0) Power-on Reset (BOREN = 1) Illegal, TO is set on POR Illegal, PD is set on POR Brown-out Reset WDT Reset WDT Wake-up MCLR Reset during normal operation MCLR Reset during Sleep or interrupt wake-up from Sleep
DS41206A-page 62
Preliminary
2003 Microchip Technology Inc.
PIC16F716
TABLE 9-5: RESET CONDITION FOR SPECIAL REGISTERS
Condition Power-on Reset (BOREN = 0) Power-on Reset (BOREN = 1) MCLR Reset during normal operation MCLR Reset during Sleep WDT Reset WDT Wake-up Brown-out Reset Interrupt wake-up from Sleep Note 1: Program Counter 000h 000h 000h 000h 000h PC + 1 000h PC + 1
(1)
Status Register 0001 1xxx 0001 1xxx 000u uuuu 0001 0uuu 0000 1uuu uuu0 0uuu 0001 1uuu uuu1 0uuu
PCON Register ---- --0x ---- --01 ---- --uu ---- --uu ---- --uu ---- --uu ---- --u0 ---- --uu
Legend: u = unchanged, x = unknown, - = unimplemented bit read as `0'.
When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 63
PIC16F716
TABLE 9-6:
Register W INDF TMR0 PCL STATUS FSR PORTA
(4), (5), (6)
INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16F716
Power-on Reset, Brown-out Reset xxxx xxxx N/A xxxx xxxx 0000h 0001 1xxx xxxx xxxx --xx 0000 xxxx xxxx ---0 0000 0000 -00x -0-- -000 xxxx xxxx xxxx xxxx --00 0000 0000 0000 -000 0000 xxxx xxxx xxxx xxxx 0000 0000 0000 0000 00-0 0000 xxxx xxxx 0000 0000 1111 1111 --11 1111 1111 1111 -0-- -000 ---- --qq 1111 1111 ---- -000 MCLR Resets WDT Reset uuuu uuuu N/A uuuu uuuu 0000h 000q quuu(3) uuuu uuuu --xx 0000 uuuu uuuu ---0 0000 0000 -00u -0-- -000 uuuu uuuu uuuu uuuu --uu uuuu 0000 0000 -000 0000 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 00-0 0000 uuuu uuuu 0000 0000 1111 1111 --11 1111 1111 1111 -0-- -000 ---- --uu 1111 1111 ---- -000 Wake-up via WDT or Interrupt uuuu uuuu N/A uuuu uuuu PC + 1(2) uuuq quuu(3) uuuu uuuu --uu uuuu uuuu uuuu ---u uuuu uuuu -uuu(1) -u-- -uuu(1) uuuu uuuu uuuu uuuu --uu uuuu uuuu uuuu -uuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu u-uu uuuu uuuu uuuu uuuu uuuu uuuu uuuu --uu uuuu uuuu uuuu -u-- -uuu ---- --uu uuuu uuuu ---- -uuu
PORTB(4), (5) PCLATH INTCON PIR1 TMR1L TMR1H T1CON TMR2 T2CON CCPR1L CCPR1H CCP1CON PWM1CON ECCPAS ADRES ADCON0 OPTION_REG TRISA TRISB PIE1 PCON PR2 ADCON1
Legend: u = unchanged, x = unknown, - = unimplemented bit, read as `0', q = value depends on condition Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 3: See Table 9-5 for Reset value for specific condition. 4: On any device Reset, these pins are configured as inputs. 5: This is the value that will be in the port output latch. 6: Output latches are unknown or unchanged. Analog inputs default to analog and read `0'.
DS41206A-page 64
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 9-10:
VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)
TOST
OST TIME-OUT
INTERNAL RESET
FIGURE 9-11:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1
VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
FIGURE 9-12:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2
VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 65
PIC16F716
9.10 Interrupts
The PIC16F716 devices have up to 7 sources of interrupt. The Interrupt Control Register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits. Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit. The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register, INTCON. When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
A Global Interrupt Enable bit, GIE (INTCON<7>) enables all un-masked interrupts when set, or disables all interrupts when cleared. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on Reset and when an interrupt vector occurs. The "return-from-interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts. The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.
FIGURE 9-13:
INTERRUPT LOGIC
T0IF T0IE INTF INTE ADIF ADIE RBIF RBIE PEIE CCP1IF CCP1IE TMR2IF TMR2IE GIE Wake-up (If in Sleep mode)
Interrupt to CPU
TMR1IF TMR1IE
DS41206A-page 66
Preliminary
2003 Microchip Technology Inc.
PIC16F716
9.10.1 INT INTERRUPT
9.11
Context Saving During Interrupts
External interrupt on RB0/INT pin is edge triggered, either rising if bit INTEDG (OPTION_REG<6>) is set, or falling if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from Sleep, if bit INTE was set prior to going into Sleep. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.13 "Power-down Mode (Sleep)" for details on Sleep mode.
During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and Status register). This will have to be implemented in firmware. Example 9-1 stores and restores the W, Status, PCLATH and FSR registers. Context storage registers, W_TEMP, STATUS_TEMP, PCLATH_TEMP and FSR_TEMP, must be defined in Common RAM which are those addresses between 70h-7Fh in Bank 0 and between F0h-FFh in Bank 1. The example: a) b) c) d) e) f) Stores the W register. Stores the Status register in Bank 0. Stores the PCLATH register Stores the FSR register. Executes the interrupt service routine code (User-generated). Restores all saved registers in reverse order from which they were stored
9.10.2
TMR0 INTERRUPT
An overflow (FFh 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0 "Timer0 Module").
9.10.3
PORTB INTCON CHANGE
An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2 "PORTB and the TRISB Register").
EXAMPLE 9-1:
MOVWF SWAPF MOVWF MOVF MOVWF CLRF BCF MOVF MOVWF : :(ISR) : MOVF MOVWF MOVF MOVWF SWAPF MOVWF SWAPF SWAPF RETFIE
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM
W_TEMP STATUS,W STATUS_TEMP PCLATH, W PCLATH_TEMP PCLATH STATUS, IRP FSR, W FSR_TEMP ;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Save status to bank zero STATUS_TEMP register ;Only required if using pages 1, 2 and/or 3 ;Save PCLATH into W ;Page zero, regardless of current page ;Return to Bank 0 ;Copy FSR to W ;Copy FSR from W to FSR_TEMP
FSR_TEMP,W FSR PCLATH_TEMP, W PCLATH STATUS_TEMP,W STATUS W_TEMP,F W_TEMP,W
;Restore FSR ;Move W into FSR ;Restore PCLATH ;Move W into PCLATH ;Swap STATUS_TEMP register into W ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W ;Return from interrupt and enable GIE
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 67
PIC16F716
9.12 Watchdog Timer (WDT)
The Watchdog Timer is a free running, on-chip, RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device have been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the Status register will be cleared upon a Watchdog Timer time-out. The WDT can be permanently disabled by clearing configuration bit WDTE (Section 9.1 "Configuration Bits"). WDT time-out period values may be found in the Electrical Specifications section under TWDT (parameter #31). Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register. Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset condition.
. Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.
FIGURE 9-14:
WATCHDOG TIMER BLOCK DIAGRAM
From TMR0 Clock Source (Figure 4-2) 0 WDT Timer 1 M U X Postscaler 8 8 - to - 1 MUX WDT Enable Bit PSA To TMR0 (Figure 4-2) 0 MUX 1 PSA PS2:PS0
WDT Time-out Note: PSA and PS2:PS0 are bits in the OPTION_REG register.
FIGURE 9-15:
Address 2007h 81h Legend: Note 1: Name Config. bits
SUMMARY OF WATCHDOG TIMER REGISTERS
Bits 13:8 (1) N/A Bit 7 BORV(1) RBPU Bit 6 BOREN(1) INTEDG Bit 5
--
Bit 4
--
Bit 3 PWRTE(1) PSA
Bit 2 WDTE PS2
Bit 1 FOSC1 PS1
Bit 0 FOSC0 PS0
OPTION_REG
T0CS
T0SE
Shaded cells are not used by the Watchdog Timer. See Register 9-1 for operation of these bits.
DS41206A-page 68
Preliminary
2003 Microchip Technology Inc.
PIC16F716
9.13 Power-down Mode (Sleep)
Power-down mode is entered by executing a SLEEP instruction. If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or high-impedance). For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, powerdown the A/D and the disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered. The MCLR pin must be at a logic high level (parameter D042). The following peripheral interrupts can wake the device from Sleep: 1. 2. 3. TMR1 interrupt. Timer1 must be operating as an asynchronous counter. ECCP capture mode interrupt. ADC running in ADRC mode.
Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.
9.13.1
WAKE-UP FROM SLEEP
9.13.2
WAKE-UP USING INTERRUPTS
The device can wake-up from Sleep through one of the following events: 1. 2. 3. External Reset input on MCLR pin. Watchdog Timer Wake-up (if WDT was enabled). Interrupt from INT pin, RB port change or some peripheral interrupts.
When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: * If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared. * If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.
External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the Status register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 69
PIC16F716
FIGURE 9-16:
OSC1 CLKOUT(4) INT pin INTF flag (INTCON<1>) GIE bit (INTCON<7>) INSTRUCTION FLOW PC PC PC+1 Inst(PC + 1) Sleep PC+2 PC+2 Inst(PC + 2) Inst(PC + 1) Dummy cycle PC + 2 0004h Inst(0004h) Dummy cycle 0005h Inst(0005h) Inst(0004h) Instruction fetched Inst(PC) = Sleep Instruction executed Inst(PC - 1) Note 1: 2: 3: 4: Processor in Sleep Interrupt Latency (Note 3) TOST(2)
WAKE-UP FROM SLEEP THROUGH INTERRUPT
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
XT, HS or LP Oscillator mode assumed. TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC Osc mode. GIE = `1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = `0', execution will continue in-line. CLKOUT is not available in these osc modes, but shown here for timing reference.
9.14
Program Verification/Code Protection
9.16
In-Circuit Serial ProgrammingTM
If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.
9.15
ID Locations
Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.
PIC16F716 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. For complete details on serial programming, please refer to the In-Circuit Serial ProgrammingTM (ICSPTM) Specification, (DS40245).
DS41206A-page 70
Preliminary
2003 Microchip Technology Inc.
PIC16F716
10.0 INSTRUCTION SET SUMMARY
The instruction set is highly orthogonal and is grouped into three basic categories: * Byte-oriented operations * Bit-oriented operations * Literal and control operations All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 s. Table 10-2 lists the instructions recognized by the MPASMTM assembler. Figure 10-1 shows the three general formats that the instructions can have. Note 1: Any unused opcode is reserved. Use of any reserved opcode may cause unexpected operation. 2: To maintain upward compatibility with future PICmicro products, do not use the OPTION and TRIS instructions. All examples use the following format to represent a hexadecimal number: 0xhh where h signifies a hexadecimal digit. Each PIC16F716 instruction is a 14-bit word divided into an opcode which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F716 instruction set summary in Table 10-2 lists byte-oriented, bitoriented, and literal and control operations. Table 10-1 shows the opcode field descriptions. For byte-oriented instructions, `f' represents a file register designator and `d' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If `d' is zero, the result is placed in the W register. If `d' is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, `b' represents a bit field designator which selects the number of the bit affected by the operation, while `f' represents the number of the file in which the bit is located. For literal and control operations, `k' represents an eight or eleven bit constant or literal value.
TABLE 10-1:
Field
f W b k x
OPCODE FIELD DESCRIPTIONS
Description
Register file address (0x00 to 0x7F) Working register (accumulator) Bit address within an 8-bit file register Literal field, constant data or label Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1 Label name Top of Stack Program Counter Global Interrupt Enable bit Watchdog Timer/Counter Time-out bit Power-down bit Destination either the W register or the specified register file location Options Contents Assigned to Register bit field In the set of User defined term (font is courier)
FIGURE 10-1:
d
GENERAL FORMAT FOR INSTRUCTIONS
0 f (FILE #)
Byte-oriented file register operations 13 8 76 OPCODE d
label TOS PC GIE WDT TO PD dest [] () <> italics
PCLATH Program Counter High Latch
d = 0 for destination W d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 76 OPCODE b (BIT #) f (FILE #)
0
b = 3-bit address f = 7-bit file register address Literal and control operations General 13 OPCODE k = 8-bit immediate value CALL and GOTO instructions only 13 11 10 OPCODE k (literal) 87 k (literal) 0
0
k = 11-bit immediate value
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 71
PIC16F716
TABLE 10-2:
Mnemonic, Operands
PIC16F716 INSTRUCTION SET
14-Bit Opcode Description Cycles MSb LSb Status Affected Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFSZ INCF INCFSZ IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f, d f, d f -- f, d f, d f, d f, d f, d f, d f, d f -- f, d f, d f, d f, d f, d Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f 1 1 1 1 1 1 1(2) 1 1(2) 1 1 1 1 1 1 1 1 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0111 0101 0001 0001 1001 0011 1011 1010 1111 0100 1000 0000 0000 1101 1100 0010 1110 0110 dfff dfff lfff 0xxx dfff dfff dfff dfff dfff dfff dfff lfff 0xx0 dfff dfff dfff dfff dfff ffff ffff ffff xxxx ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff C,DC,Z Z Z Z Z Z Z Z Z 1,2 1,2 2 1,2 1,2 1,2,3 1,2 1,2,3 1,2 1,2
C C C,DC,Z Z
1,2 1,2 1,2 1,2 1,2
BIT-ORIENTED FILE REGISTER OPERATIONS BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set 1 1 1(2) 1(2) 01 01 01 01 00bb 01bb 10bb 11bb bfff bfff bfff bfff ffff ffff ffff ffff 1,2 1,2 3 3
LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW Note 1: k k k -- k k k -- k -- -- k k Add literal and W AND literal with W Call subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into Standby mode Subtract W from literal Exclusive OR literal with W 1 1 2 1 2 1 1 2 2 2 1 1 1 11 11 10 00 10 11 11 00 11 00 00 11 11 111x 1001 0kkk 0000 1kkk 1000 00xx 0000 01xx 0000 0000 110x 1010 kkkk kkkk kkkk 0110 kkkk kkkk kkkk 0000 kkkk 0000 0110 kkkk kkkk kkkk kkkk kkkk 0100 kkkk kkkk kkkk 1001 kkkk 1000 0011 kkkk kkkk C,DC,Z Z TO,PD Z
TO,PD C,DC,Z Z
2: 3:
When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is `1' for a pin configured as input and is driven low by an external device, the data will be written back with a `0'. If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module. If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.
DS41206A-page 72
Preliminary
2003 Microchip Technology Inc.
PIC16F716
10.1 Instruction Descriptions
Add Literal and W [ label ] ADDLW 0 k 255 (W) + k (W) C, DC, Z
11 111x kkkk kkkk
ADDLW Syntax: Operands: Operation: Status Affected: Encoding: Description:
ANDLW k Syntax: Operands: Operation: Status Affected: Encoding: Description:
AND Literal with W [ label ] ANDLW 0 k 255 (W) .AND. (k) (W) Z
11 1001 kkkk kkkk
k
The contents of the W register are added to the eight bit literal `k' and the result is placed in the W register. 1 1
ADDLW 0x15
The contents of W register are AND'ed with the eight bit literal `k'. The result is placed in the W register. 1 1
ANDLW 0x5F
Words: Cycles: Example
Words: Cycles: Example
Before Instruction W = 0x10 After Instruction W = 0x25
Before Instruction W = 0xA3 After Instruction W = 0x03
ANDWF ADDWF Syntax: Operands: Operation: Status Affected: Encoding: Description: Add W and f [ label ] ADDWF 0 f 127 d [0,1] (W) + (f) (dest) C, DC, Z
00 0111 dfff ffff
AND W with f [ label ] ANDWF 0 f 127 d [0,1] (W) .AND. (f) (dest) Z
00 0101 dfff ffff
Syntax: f,d Operands: Operation: Status Affected: Encoding: Description:
f,d
Add the contents of the W register with register `f'. If `d' is 0 the result is stored in the W register. If `d' is 1 the result is stored back in register `f'. 1 1
ADDWF REG1, 0
AND the W register with register `f'. If `d' is 0 the result is stored in the W register. If `d' is 1 the result is stored back in register `f'. 1 1
ANDWF REG1, 1
Words: Cycles: Example
Words: Cycles: Example
Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z =0 C =0 DC =0
Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0x17 REG1 = 0x02
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 73
PIC16F716
BCF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example Bit Clear f [ label ] BCF 0 f 127 0b7 0 (f) None
01 00bb bfff ffff
BTFSC f,b Syntax: Operands: Operation: Status Affected: Encoding: Description:
Bit Test f, Skip if Clear [ label ] BTFSC f,b 0 f 127 0b7 skip if (f) = 0 None
01 10bb bfff ffff
Bit `b' in register `f' is cleared. 1 1
BCF REG1, 7
Before Instruction REG1 = 0xC7 After Instruction REG1 = 0x47
If bit `b' in register `f' is `0' then the next instruction is skipped. If bit `b' is `0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction. 1 1(2)
HERE FALSE TRUE BTFSC GOTO * * * REG1 PROCESS_CODE
Words: Cycles: Example
BSF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example
Bit Set f [ label ] BSF 0 f 127 0b7 1 (f) None
01 01bb bfff ffff
f,b
Bit `b' in register `f' is set. 1 1
BSF REG1, 7
Before Instruction PC = address HERE After Instruction if REG<1> = 0, PC = address TRUE if REG<1>=1, PC = address FALSE
Before Instruction REG1 = 0x0A After Instruction REG1 = 0x8A
DS41206A-page 74
Preliminary
2003 Microchip Technology Inc.
PIC16F716
BTFSS Syntax: Operands: Operation: Status Affected: Encoding: Description: Bit Test f, Skip if Set [ label ] BTFSS f,b 0 f 127 0b<7 skip if (f) = 1 None
01 11bb bfff ffff
CALL Syntax: Operands: Operation:
Call Subroutine [ label ] CALL k 0 k 2047 (PC)+ 1 TOS, k PC<10:0>, (PCLATH<4:3>) PC<12:11> None
10 0kkk kkkk kkkk
Status Affected: Encoding: Description:
If bit `b' in register `f' is `1' then the next instruction is skipped. If bit `b' is `1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruction. 1 1(2)
HERE FALSE TRUE BTFSS GOTO * * * REG1 PROCESS_CODE
Words: Cycles: Example
Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction. 1 2
HERE CALL THERE
Words: Cycles: Example
Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE
Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1
CLRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example
Clear f [ label ] CLRF 0 f 127 00h (f) 1Z Z
00 0001 1fff ffff
f
The contents of register `f' are cleared and the Z bit is set. 1 1
CLRF REG1
Before Instruction REG1 = 0x5A After Instruction REG1 = 0x00 Z =1
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 75
PIC16F716
CLRW Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example Clear W [ label ] CLRW None 00h (W) 1Z Z
00 0001 0000 0011
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Complement f [ label ] COMF 0 f 127 d [0,1] (f) (dest) Z
00 1001 dfff ffff
f,d
W register is cleared. Zero bit (Z) is set. 1 1
CLRW
The contents of register `f' are complemented. If `d' is 0 the result is stored in W. If `d' is 1 the result is stored back in register `f'. 1 1
COMF REG1, 0
Words: Cycles: Example
Before Instruction W = 0x5A After Instruction W = 0x00 Z=1
Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC
CLRWDT Syntax: Operands: Operation:
Clear Watchdog Timer [ label ] CLRWDT None 00h WDT 0 WDT prescaler, 1 TO 1 PD TO, PD
00 0000 0110 0100
DECF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Decrement f [ label ] DECF f,d 0 f 127 d [0,1] (f) - 1 (dest) Z
00 0011 dfff ffff
Status Affected: Encoding: Description:
CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set. 1 1
CLRWDT
Decrement register `f'. If `d' is 0 the result is stored in the W register. If `d' is 1 the result is stored back in register `f'. 1 1
DECF CNT, 1
Words: Cycles: Example
Words: Cycles: Example
Before Instruction WDT counter = ? After Instruction WDT counter = WDT prescaler = = TO = PD
0x00 0 1 1
Before Instruction CNT = 0x01 Z =0 After Instruction CNT = 0x00 Z =1
DS41206A-page 76
Preliminary
2003 Microchip Technology Inc.
PIC16F716
DECFSZ Syntax: Operands: Operation: Status Affected: Encoding: Description: Decrement f, Skip if 0 [ label ] DECFSZ f,d 0 f 127 d [0,1] (f) - 1 (dest); 0 None
00 1011 dfff ffff
GOTO Syntax: Operands: Operation: Status Affected: Encoding: Description:
Unconditional Branch [ label ] GOTO k 0 k 2047 k PC<10:0> PCLATH<4:3> PC<12:11> None
10 1kkk kkkk kkkk
skip if result =
The contents of register `f' are decremented. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is placed back in register `f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction. 1 1(2)
DECFSZ GOTO CONTINUE * * * HERE REG1, 1 LOOP
GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction. 1 2
GOTO THERE
Words: Cycles: Example
Words: Cycles: Example
After Instruction PC = Address THERE
Before Instruction PC = address HERE After Instruction REG1 = REG1 - 1 if REG1 = 0, PC = address CONTINUE if REG1 0, PC = address HERE+1
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 77
PIC16F716
INCF Syntax: Operands: Operation: Status Affected: Encoding: Description: Increment f [ label ] INCF f,d 0 f 127 d [0,1] (f) + 1 (dest) Z
00 1010 dfff ffff
INCFSZ Syntax: Operands: Operation: Status Affected: Encoding: Description:
Increment f, Skip if 0 [ label ] INCFSZ f,d 0 f 127 d [0,1] (f) + 1 (dest), skip if result = 0 None
00 1111 dfff ffff
The contents of register `f' are incremented. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is placed back in register `f'. 1 1
INCF REG1, 1
Words: Cycles: Example
Before Instruction REG1 = 0xFF Z =0 After Instruction REG1 = 0x00 Z =1
The contents of register `f' are incremented. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is placed back in register `f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction. 1 1(2)
INCFSZ GOTO CONTINUE * * * HERE REG1, 1 LOOP
Words: Cycles: Example
Before Instruction PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1 0, PC = address HERE +1
DS41206A-page 78
Preliminary
2003 Microchip Technology Inc.
PIC16F716
IORLW Syntax: Operands: Operation: Status Affected: Encoding: Description: Inclusive OR Literal with W [ label ] IORLW k 0 k 255 (W) .OR. k (W) Z
11 1000 kkkk kkkk
MOVLW Syntax: Operands: Operation: Status Affected: Encoding: Description:
Move Literal to W [ label ] k (W) None
11 00xx kkkk kkkk
MOVLW k
0 k 255
The contents of the W register is OR'ed with the eight bit literal `k'. The result is placed in the W register. 1 1
IORLW 0x35
The eight bit literal `k' is loaded into W register. The don't cares will assemble as `0's. 1 1
MOVLW 0x5A
Words: Cycles: Example
Words: Cycles: Example
Before Instruction W = 0x9A After Instruction W = 0xBF Z =0
After Instruction W = 0x5A
IORWF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Inclusive OR W with f [ label ] IORWF f,d 0 f 127 d [0,1] (W) .OR. (f) (dest) Z
00 0100 dfff ffff
MOVF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Move f [ label ] MOVF f,d 0 f 127 d [0,1] (f) (dest) Z
00 1000 dfff ffff
Inclusive OR the W register with register `f'. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is placed back in register `f'. 1 1
IORWF REG1, 0
Words: Cycles: Example
The contents of register `f' is moved to a destination dependent upon the status of `d'. If `d' = 0, destination is W register. If `d' = 1, the destination is file register `f' itself. `d' = 1 is useful to test a file register since status flag Z is affected. 1 1
MOVF REG1, 0
Words: Cycles: Example
Before Instruction REG1 = 0x13 W = 0x91 After Instruction REG1 = 0x13 W = 0x93 Z =1
After Instruction W= value in REG1 register Z= 1
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 79
PIC16F716
MOVWF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example Move W to f [ label ] (W) (f) None
00 0000 1fff ffff
OPTION f Syntax: Operands: Operation: Status Affected: Encoding: Description:
Load Option Register [ label ] None (W) OPTION None
00 0000 0110 0010
MOVWF
OPTION
0 f 127
Move data from W register to register `f'. 1 1
MOVWF REG1
Before Instruction REG1 = 0xFF W = 0x4F After Instruction REG1 = 0x4F W = 0x4F
The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as MOVWF. 1 1 To maintain upward compatibility with future PICmicro(R) products, do not use this instruction.
Words: Cycles: Example
NOP Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example
No Operation [ label ] None No operation None
00 0000 0xx0 0000
RETFIE Syntax: Operands: Operation: Status Affected: Encoding: Description:
Return from Interrupt [ label ] None TOS PC, 1 GIE None
00 0000 0000 1001
NOP
RETFIE
No operation. 1 1
NOP
Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction. 1 2
RETFIE
Words: Cycles: Example
After Interrupt PC = TOS GIE = 1
DS41206A-page 80
Preliminary
2003 Microchip Technology Inc.
PIC16F716
RETLW Syntax: Operands: Operation: Status Affected: Encoding: Description: Return with Literal in W [ label ] RETLW k 0 k 255 k (W); TOS PC None
11 01xx kkkk kkkk
RLF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Rotate Left f through Carry [ label ] RLF f,d 0 f 127 d [0,1] See description below C
00 1101 dfff ffff
The W register is loaded with the eight bit literal `k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. 1 2
CALL TABLE;W contains table ;offset value * ;W now has table value * * ADDWF PC;W = offset RETLW k1;Begin table RETLW k2; * * * RETLW kn; End of table
The contents of register `f' are rotated one bit to the left through the Carry Flag. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is stored back in register `f'.
C REGISTER F
Words: Cycles: Example
Words: Cycles: Example
1 1
RLF REG1, 0 REG1=1110 0110 C =0
TABLE
Before Instruction
After Instruction
REG1=1110 0110 W = 1100 1100 C =1
Before Instruction W = 0x07 After Instruction W = value of k8
RETURN Syntax: Operands: Operation: Status Affected: Encoding: Description:
Return from Subroutine [ label ] None TOS PC None
00 0000 0000 1000
RETURN
Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1 2
RETURN
Words: Cycles: Example
After Interrupt PC = TOS
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 81
PIC16F716
RRF Syntax: Operands: Operation: Status Affected: Encoding: Description: Rotate Right f through Carry [ label ] RRF f,d 0 f 127 d [0,1] See description below C
00 1100 dfff ffff
SUBLW Syntax: Operands: Operation: Status Affected: Encoding: Description:
Subtract W from Literal [ label ] 0 k 255 k - (W) (W) C, DC, Z
11 110x kkkk kkkk
SUBLW k
The contents of register `f' are rotated one bit to the right through the Carry Flag. If `d' is 0 the result is placed in the W register. If `d' is 1 the result is placed back in register `f'.
C REGISTER F
The W register is subtracted (2's complement method) from the eight bit literal `k'. The result is placed in the W register. 1 1
SUBLW 0x02
Words: Cycles: Example 1:
Words: Cycles: Example
1 1
RRF REG1, 0
Before Instruction W=1 C=? After Instruction W=1 C = 1; result is positive Example 2: Before Instruction W= 2 C=? After Instruction W= 0 C = 1; result is zero
Before Instruction REG1 = 1110 0110 C =0 After Instruction REG1 = 1110 0110 W = 0111 0011 C =0
SLEEP Syntax: Operands: Operation: [ label ] None 00h WDT, 0 WDT prescaler, 1 TO, 0 PD TO, PD
00 0000 0110 0011
SLEEP
Example 3:
Before Instruction W= C= W= C= 3 ? 0xFF 0; result is negative
After Instruction
Status Affected: Encoding: Description:
The power-down Status bit, PD is cleared. Time out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. 1 1
SLEEP
Words: Cycles: Example:
DS41206A-page 82
Preliminary
2003 Microchip Technology Inc.
PIC16F716
SUBWF Syntax: Operands: Operation: Status Affected: Encoding: Description: Subtract W from f [ label ] 0 f 127 d [0,1] (f) - (W) (dest) C, DC, Z Status Affected:
00 0010 dfff ffff
SWAPF Syntax: Operands: Operation:
Swap Nibbles in f [ label ] SWAPF f,d 0 f 127 d [0,1] (f<3:0>) (dest<7:4>), (f<7:4>) (dest<3:0>) None
00 1110 dfff ffff
SUBWF f,d
Encoding: Description:
Subtract (2's complement method) W register from register `f'. If `d' is 0 the result is stored in the W register. If `d' is 1 the result is stored back in register `f'. 1 1
SUBWF REG1, 1
The upper and lower nibbles of register `f' are exchanged. If `d' is 0 the result is placed in W register. If `d' is 1 the result is placed in register `f'. 1 1
SWAPF REG1, 0
Words: Cycles: Example 1:
Words: Cycles: Example
Before Instruction REG1 = 3 W =2 C =? After Instruction REG1 W C Z DC Example 2: = = = = = 1 2 1; result is positive 0 1
Before Instruction REG1 = 0xA5 After Instruction REG1 = 0xA5 W = 0x5A
TRIS Syntax: Operands: Operation: Status Affected: Encoding: Description:
Load TRIS Register [ label ] TRIS 5f6 (W) TRIS register f; None
00 0000 0110 0fff
f
Before Instruction REG1 = 2 W =2 C =? After Instruction REG1 W C Z = = = = 0 2 1; result is zero DC = 1
The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them. 1 1 To maintain upward compatibility with future PICmicro(R) products, do not use this instruction.
Example 3:
Before Instruction REG1 = 1 W =2 C =? After Instruction REG1 W C Z = = = = 0xFF 2 0; result is negative DC = 0
Words: Cycles: Example
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 83
PIC16F716
XORLW Syntax: Operands: Operation: Status Affected: Encoding: Description: Exclusive OR Literal with W [ label ] XORLW k 0 k 255 (W) .XOR. k (W) Z
11 1010 kkkk kkkk
XORWF Syntax: Operands: Operation: Status Affected: Encoding: Description:
Exclusive OR W with f [ label ] 0 f 127 d [0,1] (W) .XOR. (f) (dest) Z
00 0110 dfff ffff
XORWF
f,d
The contents of the W register are XOR'ed with the eight bit literal `k'. The result is placed in the W register. 1 1
XORLW 0xAF
Words: Cycles: Example:
Exclusive OR the contents of the W register with register `f'. If `d' is 0 the result is stored in the W register. If `d' is 1 the result is stored back in register `f'. 1 1
XORWF REG1, 1
Words: Cycles: Example
Before Instruction W = 0xB5 After Instruction W = 0x1A
Before Instruction REG1 = 0xAF W = 0xB5 After Instruction REG1 = 0x1A W = 0xB5
DS41206A-page 84
Preliminary
2003 Microchip Technology Inc.
PIC16F716
11.0 DEVELOPMENT SUPPORT
11.1
The PICmicro(R) microcontrollers are supported with a full range of hardware and software development tools: * Integrated Development Environment - MPLAB(R) IDE Software * Assemblers/Compilers/Linkers - MPASMTM Assembler - MPLAB C17 and MPLAB C18 C Compilers - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB C30 C Compiler - MPLAB ASM30 Assembler/Linker/Library * Simulators - MPLAB SIM Software Simulator - MPLAB dsPIC30 Software Simulator * Emulators - MPLAB ICE 2000 In-Circuit Emulator - MPLAB ICE 4000 In-Circuit Emulator * In-Circuit Debugger - MPLAB ICD 2 * Device Programmers - PRO MATE(R) II Universal Device Programmer - PICSTART(R) Plus Development Programmer * Low Cost Demonstration Boards - PICDEMTM 1 Demonstration Board - PICDEM.netTM Demonstration Board - PICDEM 2 Plus Demonstration Board - PICDEM 3 Demonstration Board - PICDEM 4 Demonstration Board - PICDEM 17 Demonstration Board - PICDEM 18R Demonstration Board - PICDEM LIN Demonstration Board - PICDEM USB Demonstration Board * Evaluation Kits - KEELOQ(R) - PICDEM MSC - microID(R) - CAN - PowerSmart(R) - Analog
MPLAB Integrated Development Environment Software
The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows(R) based application that contains: * An interface to debugging tools - simulator - programmer (sold separately) - emulator (sold separately) - in-circuit debugger (sold separately) * A full-featured editor with color coded context * A multiple project manager * Customizable data windows with direct edit of contents * High level source code debugging * Mouse over variable inspection * Extensive on-line help The MPLAB IDE allows you to: * Edit your source files (either assembly or C) * One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information) * Debug using: - source files (assembly or C) - absolute listing file (mixed assembly and C) - machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.
11.2
MPASM Assembler
The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel(R) standard hex files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM assembler features include: * Integration into MPLAB IDE projects * User defined macros to streamline assembly code * Conditional assembly for multi-purpose source files * Directives that allow complete control over the assembly process
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 85
PIC16F716
11.3 MPLAB C17 and MPLAB C18 C Compilers 11.6 MPLAB ASM30 Assembler, Linker, and Librarian
The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.
MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: * * * * * * Support for the entire dsPIC30F instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility
11.4
MPLINK Object Linker/ MPLIB Object Librarian
The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from pre-compiled libraries, using directives from a linker script. The MPLIB object librarian manages the creation and modification of library files of pre-compiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: * Efficient linking of single libraries instead of many smaller files * Enhanced code maintainability by grouping related modules together * Flexible creation of libraries with easy module listing, replacement, deletion and extraction
11.7
MPLAB SIM Software Simulator
The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break, or Trace mode. The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.
11.5
MPLAB C30 C Compiler
11.8
MPLAB SIM30 Software Simulator
The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many commandline options and language extensions to take full advantage of the dsPIC30F device hardware capabilities, and afford fine control of the compiler code generator. MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, timekeeping, and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high level source debugging with the MPLAB IDE.
The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins. The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high speed simulator is designed to debug, analyze and optimize time intensive DSP routines.
DS41206A-page 86
Preliminary
2003 Microchip Technology Inc.
PIC16F716
11.9 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator 11.11 MPLAB ICD 2 In-Circuit Debugger
Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low cost, run-time development tool, connecting to the host PC via an RS-232 or high speed USB interface. This tool is based on the Flash PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers cost effective in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.
The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers. The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft(R) Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.
11.12 PRO MATE II Universal Device Programmer
The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, and program PICmicro devices without a PC connection. It can also set code protection in this mode.
11.10 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator
The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment. The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory, and the ability to view variables in real-time. The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.
11.13 PICSTART Plus Development Programmer
The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 87
PIC16F716
11.14 PICDEM 1 PICmicro Demonstration Board
The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer, or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.
11.17 PICDEM 3 PIC16C92X Demonstration Board
The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.
11.18 PICDEM 4 8/14/18-Pin Demonstration Board
The PICDEM 4 can be used to demonstrate the capabilities of the 8-, 14-, and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low power operation with the super capacitor circuit, and jumpers allow on-board hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2x16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.
11.15 PICDEM.net Internet/Ethernet Demonstration Board
The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface, and a 16 x 2 LCD display. Also included is the book and CD-ROM "TCP/IP Lean, Web Servers for Embedded Systems," by Jeremy Bentham
11.19 PICDEM 17 Demonstration Board
The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board Flash memory. A generous prototype area is available for user hardware expansion.
11.16 PICDEM 2 Plus Demonstration Board
The PICDEM 2 Plus demonstration board supports many 18-, 28-, and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs, and sample PIC18F452 and PIC16F877 Flash microcontrollers.
DS41206A-page 88
Preliminary
2003 Microchip Technology Inc.
PIC16F716
11.20 PICDEM 18R PIC18C601/801 Demonstration Board
The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/De-multiplexed and 16-bit memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.
11.23 PICDEM USB PIC16C7X5 Demonstration Board
The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.
11.24 Evaluation and Programming Tools
In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products. * KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products * CAN developers kit for automotive network applications * Analog design boards and filter design software * PowerSmart battery charging evaluation/ calibration kits * IrDA(R) development kit * microID development and rfLabTM development software * SEEVAL(R) designer kit for memory evaluation and endurance calculations * PICDEM MSC demo boards for Switching mode power supply, high power IR driver, delta sigma ADC, and flow rate sensor Check the Microchip web page and the latest Product Line Card for the complete list of demonstration and evaluation kits.
11.21 PICDEM LIN PIC16C43X Demonstration Board
The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three microcontrollers are programmed with firmware to provide LIN bus communication.
11.22 PICkitTM 1 Flash Starter Kit
A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation, and development of 8/14-pin Flash PIC(R) microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the user's guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB(R) IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC(R) Microcontrollers" Handbook and a USB Interface Cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 89
PIC16F716
NOTES:
DS41206A-page 90
Preliminary
2003 Microchip Technology Inc.
PIC16F716
12.0 ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings() Ambient temperature under bias......................................................................................................... .-55C to +125C Storage temperature ........................................................................................................................... -65C to +150C Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ....................................... -0.3V to (VDD +0.3V) Voltage on VDD with respect to VSS ...................................................................................................... -0.3V to +7.5V Voltage on MCLR with respect to VSS (Note 2) ...................................................................................... 0V to +13.25V Voltage on RA4 with respect to Vss ............................................................................................................ 0V to +8.5V Total power dissipation (Note 1) (PDIP and SOIC)................................................................................................ 1.0W Total power dissipation (Note 1) (SSOP) ............................................................................................................. 0.65W Maximum current out of VSS pin ........................................................................................................................ 300 mA Maximum current into VDD pin ........................................................................................................................... 250 mA Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................20 mA Output clamp current, IOK (VO < 0 or VO > VDD) ...........................................................................................................20 mA Maximum output current sunk by any I/O pin....................................................................................................... 25 mA Maximum output current sourced by any I/O pin ................................................................................................. 25 mA Maximum current sunk by PORTA and PORTB (combined).............................................................................. 200 mA Maximum current sourced by PORTA and PORTB (combined) ........................................................................ 200 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL) 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to VSS. NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 91
PIC16F716
FIGURE 12-1:
6.0 5.5 5.0 VDD (Volts) 4.5 4.0 3.5 3.0 2.5 2.0 0 4 10 Frequency (MHz) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 20 25
PIC16F716 VOLTAGE-FREQUENCY GRAPH, -40C < TA < +85C(1)
FIGURE 12-2:
6.0 5.5 5.0 4.5 VDD (Volts) 4.0 3.5 3.0 2.5 2.0 0
PIC16F716 VOLTAGE-FREQUENCY GRAPH, 85C < TA < +125C(1)
4
10 Frequency (MHz)
20
25
Note 1:
The shaded region indicates the permissible combinations of voltage and frequency.
DS41206A-page 92
Preliminary
2003 Microchip Technology Inc.
PIC16F716
12.1 DC Characteristics: PIC16F716 (Industrial, Extended)
Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Min Typ Max Units Conditions
DC CHARACTERISTICS Param No.
Sym VDD
Characteristic Supply Voltage
D001 D001A D002* D003 VDR RAM Data Retention Voltage(1)
2.0 3.0 -- -- 0.05 TBD
-- -- 1.5* Vss -- --
5.5 5.5 -- -- -- --
V V V V
Industrial Extended
VPOR VDD Start Voltage to ensure internal Power-on Reset signal
See section on Power-on Reset for details
D004* SVDD VDD Rise Rate to ensure D004A* internal Power-on Reset signal
V/ms PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
VBOR Brown-out Reset voltage trip point D005 3.65 TBD 4.0 2.5 4.35 TBD V V BOREN bit set, BOR bit = `1' BOREN bit set, BOR bit = `0'
* These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 93
PIC16F716
12.2 DC Characteristics: PIC16F716 (Industrial)
Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C Min Typ Max Units VDD Conditions DC CHARACTERISTICS Para m No. D001 IPD D020 Power-down Base Current -- -- -- IMOD Peripheral Module Current D021
(1)
Sym VDD
Characteristic Supply Voltage
2.0
-- 0.1 0.1 0.2 1 2 9 TBD 40 45 1.8 2.6 3.0 14 23 45 120 180 290 220 350 600 2.1 2.5
5.5 0.8 0.85 2.7 2.0 3.5 13.5 TBD TBD TBD TBD TBD TBD 17 28 60 160 250 370 300 470 780 2.9 3.3
V A A A A A A A A A A A A A A A A A A A A A mA mA
-- 2.0 3.0 5.0 2.0 3.0 5.0 3.0 4.5 5.0 2.0 3.0 5.0 2.0 3.0 5.0 2.0 3.0 5.0 2.0 3.0 5.0 4.5 5.0 FOSC = 20 MHz HS Oscillator mode FOSC = 4 MHz XT Oscillator mode FOSC = 1 MHz XT Oscillator mode FOSC = 32 kHz LP Oscillator mode T1OSC Current BOR Current WDT Current WDT, BOR and T1OSC: disabled
-- -- -- -- D022 -- -- D025 -- -- -- IDD D010 Supply Current -- -- -- -- D011 -- -- -- D012 -- -- -- D013 --
Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The "" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption. 2: ADC on, not converting.
DS41206A-page 94
Preliminary
2003 Microchip Technology Inc.
PIC16F716
12.3 DC Characteristics: PIC16F716 (Extended)
Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +125C Min Typ Max Units VDD Conditions DC CHARACTERISTICS Param No. Sym VDD D001 IPD D020E IMOD Peripheral Module Current D021E
(1)
Characteristic Supply Voltage
3.0 Power-down Base Current -- -- -- -- -- -- -- --
-- 0.1 0.2 2 9 40 45 2.6 3.0 21 38 182 293 371 668 2.6 3
5.5 TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD TBD
V A A A A A A A A A A A A A A A mA mA
-- 3.0 5.0 3.0 5.0 3.0 4.5 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 4.5 5.0 FOSC = 32 kHz LP Oscillator mode FOSC = 1 MHz XT Oscillator mode FOSC = 4 MHz XT Oscillator mode FOSC = 20 MHz HS Oscillator mode T1OSC Current BOR Current WDT Current WDT, BOR and T1OSC: disabled
TBD TBD
D022E
D025E IDD D010E Supply Current
-- -- -- -- -- -- -- -- --
D011E D012E D013E
Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The "" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption. 2: ADC on, not converting.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 95
PIC16F716
12.4 DC Characteristics: PIC16F716 (Industrial, Extended)
Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Operating voltage VDD range as described in DC spec Section 12.1 "DC Characteristics: PIC16F716 (Industrial, Extended)" and Section 12.4 "DC Characteristics: PIC16F716 (Industrial, Extended)". Characteristic Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, OSC1 (in RC mode) OSC1 (in HS mode) OSC1 (in XT and LP modes) Input High Voltage I/O ports with TTL buffer Min Typ Max Units Conditions
DC CHARACTERISTICS
Param No.
Sym
VIL D030 D030A D031 D032 D033
VSS VSS VSS VSS VSS VSS
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 250 -- -- -- --
0.8 0.15 VDD 0.2 VDD 0.2 VDD 0.3 VDD 0.6
V V V V V V
4.5V VDD 5.5V otherwise
(Note1)
VIH D040 D040A D041 D042 D042A D043 D060 IIL
with Schmitt Trigger buffer MCLR OSC1 (XT, HS and LP modes) OSC1 (in RC mode) Input Leakage Current(2), (3) I/O ports
2.0 0.25 VDD + 0.8V 0.8 VDD 0.8 VDD 0.7 VDD 0.9 VDD -- --
VDD VDD VDD VDD VDD VDD 1 500 5 5 400 0.6 0.6 0.6 0.6
V V V V V V
4.5V VDD 5.5V otherwise For entire VDD range (Note1)
A
nA
D061 D063 D070 D080 IPURB VOL
MCLR, RA4/T0CKI OSC1/CLKIN PORTB weak pull-up current Output Low Voltage I/O ports
-- -- 50 -- --
A A A
V V V V
Vss VPIN VDD, Pin at high-impedance Vss VPIN VDD, Pin configured as analog input Vss VPIN VDD Vss VPIN VDD, XT, HS and LP osc modes VDD = 5V, VPIN = VSS IOL = 8.5 mA, VDD = 4.5V, -40C to +85C IOL = 7.0 mA, VDD = 4.5V, -40C to +125C IOL = 1.6 mA, VDD = 4.5V, -40C to +85C IOL = 1.2 mA, VDD = 4.5V, -40C to +125C IOH = -3.0 mA, VDD = 4.5V, -40C to +85C IOH = -2.5 mA, VDD = 4.5V, -40C to +125C IOH = -1.3 mA, VDD = 4.5V, -40C to +85C IOH = -1.0 mA, VDD = 4.5V, -40C to +125C RA4 pin
D083
OSC2/CLKOUT (RC Osc mode)
-- --
Output High Voltage D090 VOH I/O ports(3) VDD-0.7 VDD-0.7 D092 OSC2/CLKOUT (RC Osc mode) VDD-0.7 VDD-0.7 D150* -- -- -- -- -- -- -- -- V V V V
Note
Open-Drain High Voltage -- -- 8.5 V VOD These parameters are characterized but not tested. Data in "Type" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC Oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmicro be driven with external clock in RC mode. 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. * 1:
DS41206A-page 96
Preliminary
2003 Microchip Technology Inc.
PIC16F716
DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Operating voltage VDD range as described in DC spec Section 12.1 "DC Characteristics: PIC16F716 (Industrial, Extended)" and Section 12.4 "DC Characteristics: PIC16F716 (Industrial, Extended)". Characteristic Min Typ Max Units Conditions
Param No. D100 D101
Sym
Capacitive Loading Specs on Output Pins COSC2 OSC2/CLKOUT pin --
--
15
pF
In XT, HS and LP modes when external clock is used to drive OSC1.
Note
All I/O pins and OSC2 (in RC mode) -- -- 50 pF CIO These parameters are characterized but not tested. Data in "Type" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC Oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PICmicro be driven with external clock in RC mode. 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. * 1:
12.5
12.5.1
AC (Timing) Characteristics
TIMING PARAMETER SYMBOLOGY
The timing parameter symbols have been created using one of the following formats:
1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDI do SDO dt Data in io I/O port mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (Hi-impedance) L Low
T
Time
osc rd rw sc ss t0 t1 wr
OSC1 RD RD or WR SCK SS T0CKI T1CKI WR
P R V Z
Period Rise Valid Hi-impedance
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 97
PIC16F716
12.5.2 TIMING CONDITIONS
The temperature and voltages specified in Table 12-1 apply to all timing specifications, unless otherwise noted. Figure 12-3 specifies the load conditions for the timing specifications.
TABLE 12-1:
TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC
Standard Operating Conditions (unless otherwise stated) Operating temperature -40C TA +85C for industrial -40C TA +125C for extended Operating voltage VDD range as described in DC spec Section 12.1 "DC Characteristics: PIC16F716 (Industrial, Extended)" and Section 12.4 "DC Characteristics: PIC16F716 (Industrial, Extended)". LC parts operate for commercial/industrial temp's only.
AC CHARACTERISTICS
FIGURE 12-3:
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1 VDD/2 Cl VSS Pin VSS Cl RL = 464 CL = 50 pF for all pins except OSC2/CLKOUT 15 pF for OSC2 output Load condition 2
Rl
Pin
12.5.3
TIMING DIAGRAMS AND SPECIFICATIONS EXTERNAL CLOCK TIMING
Q4 Q1 Q2 Q3 Q4 Q1
FIGURE 12-4:
OSC1 1 2 CLKOUT 3 3 4 4
DS41206A-page 98
Preliminary
2003 Microchip Technology Inc.
PIC16F716
TABLE 12-2:
Param No. 1A Sym FOSC
EXTERNAL CLOCK TIMING REQUIREMENTS
Characteristic Ext. Clock Input Frequency(1) Min Typ Max Units Conditions
DC -- 4 MHz RC and XT Osc modes DC -- 20 MHz HS Osc mode DC -- 200 kHz LP Osc mode (1) Oscillator Frequency DC -- 4 MHz RC Osc mode 0.1 -- 4 MHz XT Osc mode 4 -- 20 MHz HS Osc mode 5 -- 200 kHz LP Osc mode (1) 1 TOSC External CLKIN Period 250 -- -- ns RC and XT Osc modes 50 -- -- ns HS Osc mode 5 -- -- s LP Osc mode Oscillator Period(1) 250 -- -- ns RC Osc mode 250 -- 10,000 ns XT Osc mode 50 -- 250 ns HS Osc mode 5 -- -- s LP Osc mode 2 Tcy Instruction Cycle Time(1) 200 -- DC ns TCY = 4/FOSC 3* TosL, External Clock in (OSC1) High or 100 -- -- ns XT oscillator TosH Low Time 2.5 -- -- s LP oscillator 15 -- -- ns HS oscillator 4* TosR, External Clock in (OSC1) Rise or -- -- 25 ns XT oscillator TosF Fall Time -- -- 50 ns LP oscillator -- -- 15 ns HS oscillator * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 99
PIC16F716
FIGURE 12-5:
OSC1 10 CLKOUT 13 14 I/O Pin (input) 17 I/O Pin (output) old value 20, 21 15 new value 19 18 12 16 11
CLKOUT AND I/O TIMING
Q4 Q1 Q2 Q3
Note 1:
Refer to Figure 12-3 for load conditions.
TABLE 12-3:
Param No. 10* 11* 12* 13* 14* 15* 16* 17* 18* 18A* 19* 20* 20A* 21* 21A* 22* 23* TINP TRBP TIOF
CLKOUT AND I/O TIMING REQUIREMENTS
Characteristic OSC1 to CLKOUT CLKOUT rise time CLKOUT fall time CLKOUT to Port out valid Port input valid before CLKOUT Port input hold after CLKOUT OSC1 (Q1 cycle) to Port out valid OSC1 (Q2 cycle) to Port input invalid (I/O in hold time) Port output rise time Port output fall time INT pin high or low time RB7:RB4 change INT high or low time Standard Extended (LC) Min -- -- -- -- -- TOSC + 200 0 -- 100 200 0 -- -- -- -- Tcy Tcy Typ 75 75 35 35 -- -- -- 50 -- -- -- 10 -- 10 -- -- -- Max 200 200 100 100 20 -- -- 150 -- -- -- 40 80 40 80 -- -- Units Conditions ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns (Note 1) (Note 1) (Note 1) (Note 1) (Note 1) (Note 1) (Note 1)
Sym TOSH2CKL TCKR TCKF TCKL2IOV TIOV2CKH TCKH2IOI TOSH2IOV TOSH2IOI
TOSH2CKH OSC1 to CLKOUT
TIOV2OSH TIOR
Port input valid to OSC1 (I/O in setup time) Standard Extended (LC) Standard Extended (LC)
* These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. These parameters are asynchronous events not related to any internal clock edge. Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.
DS41206A-page 100
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING(1)
VDD MCLR Internal POR 33 PWRT Time-out OSC Time-out Internal Reset Watchdog Timer Reset 34 I/O Pins 32 30
31
34
Note 1:
Refer to Figure 12-3 for load conditions.
FIGURE 12-7:
BROWN-OUT RESET TIMING
BVDD VDD 35
TABLE 12-4:
Param No. 30 31* 32 33* 34 35 Sym TMCL TWDT TOST TPWRT TIOZ TBOR
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS
Characteristic MCLR Pulse Width (low) Watchdog Timer Time-out Period (No Prescaler) Oscillation Start-up Timer Period Power-up Timer Period I/O high-impedance from MCLR Low or WDT Reset Brown-out Reset Pulse Width Min 2 7 TBD -- 28 TBD -- 100 Typ -- 18 TBD 1024 TOSC 72 TBD -- -- Max Units -- 33 TBD -- 132 TBD 2.1 -- s ms ms -- ms ms s s VDD BVDD (D005) Conditions VDD = 5V, -40C to +125C VDD = 5V, -40C to +85C VDD = 5V, +85C to +125C TOSC = OSC1 period VDD = 5V, -40C to +85C VDD = 5V, +85C to +125C
* These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 101
PIC16F716
FIGURE 12-8:
T0CKI
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS(1)
40 42 T1OSO/T1CKI
41
45 47 TMR0 or TMR1 Note 1: Refer to Figure 12-3 for load conditions.
46 48
TABLE 12-5:
Param No. 40* 41* 42* Sym Tt0H Tt0L Tt0P
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Characteristic T0CKI High Pulse Width T0CKI Low Pulse Width T0CKI Period No Prescaler With Prescaler No Prescaler With Prescaler No Prescaler With Prescaler Min 0.5TCY + 20 10 0.5TCY + 20 10 TCY + 40 Greater of: 20 or TCY + 40 N 0.5TCY + 20 15 Typ -- -- -- -- -- -- Max -- -- -- -- -- -- Units ns ns ns ns ns ns Conditions Must also meet parameter 42 Must also meet parameter 42 N = prescale value (2, 4,..., 256) Must also meet parameter 47
45*
Tt1H
46*
Tt1L
47*
Tt1P
T1CKI High Time Synchronous, Prescaler = 1 Synchronous, Standard Prescaler = 2,4,8 Asynchronous Standard T1CKI Low Time Synchronous, Prescaler = 1 Synchronous, Standard Prescaler = 2,4,8 Asynchronous Standard T1CKI input Synchronous Standard period
-- --
-- --
ns ns
30 0.5TCY + 20 15
-- -- --
-- -- --
ns ns ns
Must also meet parameter 47
48*
Asynchronous Standard -- -- ns Timer1 oscillator input frequency range -- 32.768 kHz (oscillator enabled by setting bit T1OSCEN) TCKEZtmr1 Delay from external clock edge to timer increment 2Tosc -- 7Tosc -- * These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Ft1
30 Greater of: 30 OR TCY + 40 N 60 32.768
-- --
-- --
ns ns
N = prescale value (1, 2, 4, 8)
DS41206A-page 102
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 12-9: CAPTURE/COMPARE/PWM TIMINGS(1)
CCP1 (Capture Mode)
50 52
51
CCP1 (Compare or PWM Mode) 53 Note 1: Refer to Figure 12-3 for load conditions. 54
TABLE 12-6:
Param Sym No. 50* 51* 52*
CAPTURE/COMPARE/PWM REQUIREMENTS
Characteristic No Prescaler With Prescaler Standard Min 0.5TCY + 20 10 0.5TCY + 20 10 3TCY + 40 N Standard Extended Standard Extended -- -- -- -- Typ Max Units -- -- -- -- -- -- -- -- -- -- ns ns ns ns ns N = prescale value (1,4, or 16) Conditions
TccL CCP1 input low time
TccH CCP1 input high No Prescaler time With Prescaler Standard TccP CCP1 input period
53* 53A* 54* 54A*
TccR CCP1 output rise time TccF CCP1 output fall time
10 -- 10 --
40 80 40 80
ns ns ns ns
* These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 103
PIC16F716
TABLE 12-7:
Para m No. A00 A01 A02 A03 A04 A05 A06 A10 A20 A25 A30 A40 Sym
A/D CONVERTER CHARACTERISTICS: PIC16F716 (INDUSTRIAL, EXTENDED)
Characteristic Min 2.5 -- -- -- -- -- -- -- 2.5V VSS 0.3 -- -- Typ -- -- -- -- -- -- -- guaranteed(3) -- -- -- 180 Max 5.5 8-bits <1 <1 <1 <1 <1 -- VDD + 0.3 VREF + 0.3 10.0 -- Units V bit VREF = VDD = 5.12V, VSS VAIN VREF Conditions
VDD VDD Operation NR Resolution
EABS Total Absolute error EIL EDL EFS Integral linearity error Differential linearity error Full scale error
LSb VREF = VDD = 5.12V, VSS VAIN VREF LSb VREF = VDD = 5.12V, VSS VAIN VREF LSb VREF = VDD = 5.12V, VSS VAIN VREF LSb VREF = VDD= 5.12V, VSS VAIN VREF LSb VREF = VDD = 5.12V, VSS VAIN VREF -- V V k A Average current consumption when A/D is on.(1) During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1 "DC Characteristics: PIC16F716 (Industrial, Extended)". During A/D Conversion cycle VSS VAIN VREF
EOFF Offset error -- Monotonicity
VREF Reference voltage VAIN Analog input voltage ZAIN Recommended impedance of analog voltage source IAD A/D conversion current (VDD) Standard
A50
IREF VREF input current(2)
10
--
1000
A
--
--
10
A
* These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input. 3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.
DS41206A-page 104
Preliminary
2003 Microchip Technology Inc.
PIC16F716
FIGURE 12-10: A/D CONVERSION TIMING
BSF ADCON0, GO 134 Q4 130 A/D CLK 132 (TOSC/2)(1) 131
1 Tcy
A/D DATA
7
6
5
4
3
2
1
0
ADRES
OLD_DATA
NEW_DATA
ADIF GO SAMPLING STOPPED DONE
SAMPLE
Note
1:
If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
TABLE 12-8:
Param No. 130 Sym TAD
A/D CONVERSION REQUIREMENTS
Characteristic A/D clock period Industrial Industrial Extended Extended Min 1.6 1.6 1.6 1.6 9.5 (Note 2) 5* Typ -- 4.0 -- 6.0 -- 20 -- Max -- 6.0 -- 9.0 9.5 -- -- Units s s s s TAD s s The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD). If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. Conditions TOSC based, VREF 3.0V A/D RC mode TOSC based, VREF 3.0V A/D RC mode
131 132
TCNV Conversion time (not including S/H time)(1) TACQ Acquisition time
134
TGO
Q4 to A/D clock start
--
TOSC/2 **
--
--
135
TSWC Switching from convert sample time
1.5 **
--
--
TAD
* These parameters are characterized but not tested. ** This specification ensured by design. Data in "Typ" column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: ADRES register may be read on the following TCY cycle. 2: See Section 12.1 "DC Characteristics: PIC16F716 (Industrial, Extended)" for min. conditions.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 105
PIC16F716
NOTES:
DS41206A-page 106
Preliminary
2003 Microchip Technology Inc.
PIC16F716
13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices will operate properly only within the specified range. The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25C. 'Max' or 'min' represents (mean + 3) or (mean - 3) respectively, where is standard deviation, over the whole temperature range.
Graphs and Tables not available at this time.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 107
PIC16F716
NOTES:
DS41206A-page 108
Preliminary
2003 Microchip Technology Inc.
PIC16F716
14.0
14.1
PACKAGING INFORMATION
Package Marking Information
18-Lead PDIP Example PIC16F716-04/P 0023CBA
XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXX YYWWNNN
18-Lead SOIC
Example PIC16F716 -20/SO 0018CDK
XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN
20-Lead SSOP
XXXXXXXXXXX XXXXXXXXXXX
Example PIC16F716 -20I/SS025 0020CBK
YYWWNNN
Legend: XX...X Y YY WW NNN
Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code
Note:
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 109
PIC16F716
18-Lead Plastic Dual In-line (P) - 300 mil (PDIP)
E1
D
2 n 1
E
A2 A L A1 B1
c
eB Units Dimension Limits n p
B
p
MIN
Number of Pins Pitch Top to Seating Plane A .140 .170 Molded Package Thickness A2 .115 .145 Base to Seating Plane A1 .015 Shoulder to Shoulder Width E .300 .313 .325 Molded Package Width E1 .240 .250 .260 Overall Length D .890 .898 .905 Tip to Seating Plane L .125 .130 .135 c Lead Thickness .008 .012 .015 Upper Lead Width B1 .045 .058 .070 Lower Lead Width B .014 .018 .022 Overall Row Spacing eB .310 .370 .430 Mold Draft Angle Top 5 10 15 Mold Draft Angle Bottom 5 10 15 * Controlling Parameter Significant Characteristic Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007
INCHES* NOM 18 .100 .155 .130
MAX
MIN
MILLIMETERS NOM 18 2.54 3.56 3.94 2.92 3.30 0.38 7.62 7.94 6.10 6.35 22.61 22.80 3.18 3.30 0.20 0.29 1.14 1.46 0.36 0.46 7.87 9.40 5 10 5 10
MAX
4.32 3.68 8.26 6.60 22.99 3.43 0.38 1.78 0.56 10.92 15 15
DS41206A-page 110
Preliminary
2003 Microchip Technology Inc.
PIC16F716
18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)
E p E1
D
2 B n 1
h
45
c A A2
L A1
Number of Pins Pitch Overall Height Molded Package Thickness Standoff Overall Width Molded Package Width Overall Length Chamfer Distance Foot Length Foot Angle Lead Thickness Lead Width Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter Significant Characteristic
Units Dimension Limits n p A A2 A1 E E1 D h L c B
MIN
.093 .088 .004 .394 .291 .446 .010 .016 0 .009 .014 0 0
INCHES* NOM 18 .050 .099 .091 .008 .407 .295 .454 .020 .033 4 .011 .017 12 12
MAX
MIN
.104 .094 .012 .420 .299 .462 .029 .050 8 .012 .020 15 15
MILLIMETERS NOM 18 1.27 2.36 2.50 2.24 2.31 0.10 0.20 10.01 10.34 7.39 7.49 11.33 11.53 0.25 0.50 0.41 0.84 0 4 0.23 0.27 0.36 0.42 0 12 0 12
MAX
2.64 2.39 0.30 10.67 7.59 11.73 0.74 1.27 8 0.30 0.51 15 15
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 111
PIC16F716
20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)
E E1 p
D
B n
2 1
c A
A2
L A1
Number of Pins Pitch Overall Height Molded Package Thickness Standoff Overall Width Molded Package Width Overall Length Foot Length Lead Thickness Foot Angle Lead Width Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter Significant Characteristic
Units Dimension Limits n p A A2 A1 E E1 D L c B
MIN
.068 .064 .002 .299 .201 .278 .022 .004 0 .010 0 0
INCHES* NOM 20 .026 .073 .068 .006 .309 .207 .284 .030 .007 4 .013 5 5
MAX
MIN
.078 .072 .010 .322 .212 .289 .037 .010 8 .015 10 10
MILLIMETERS NOM 20 0.65 1.73 1.85 1.63 1.73 0.05 0.15 7.59 7.85 5.11 5.25 7.06 7.20 0.56 0.75 0.10 0.18 0.00 101.60 0.25 0.32 0 5 0 5
MAX
1.98 1.83 0.25 8.18 5.38 7.34 0.94 0.25 203.20 0.38 10 10
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072
DS41206A-page 112
Preliminary
2003 Microchip Technology Inc.
PIC16F716
APPENDIX A: REVISION HISTORY APPENDIX B:
Revision A (June 2003) Original data sheet. However, the device described in this data sheet are upgrades to PIC16C716.
CONVERSION CONSIDERATIONS
This is a Flash program memory version of the PIC16C716 device. Refer to the migration document, DS40059, for more information about differences between the PIC16F716 and PIC16C716.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 113
PIC16F716
APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES
To convert code written for PIC16C5X to PIC16F716, the user should take the following steps: 1. 2. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme. Eliminate any data memory page switching. Redefine data variables to reallocate them. Verify all writes to Status, Option, and FSR registers since these have changed. Change Reset vector to 0000h
This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16F716). The following are the list of modifications over the PIC16C5X microcontroller family: 1. Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before). A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from Status register. Data memory paging is redefined slightly. Status register is modified. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X. OPTION_REG and TRIS registers are made addressable. Interrupt capability is added. Interrupt vector is at 0004h. Stack size is increased to 8 deep. Reset vector is changed to 0000h. Reset of all registers is revisited. Five different Reset (and wake-up) types are recognized. Registers are reset differently. Wake-up from Sleep through interrupt is added. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up. PORTB has weak pull-ups and interrupt-onchange feature. T0CKI pin is also a port pin (RA4) now. FSR is made a full eight bit register. "In-circuit serial programming" is made possible. The user can program PIC16F716 devices using only five pins: VDD, VSS, MCLR/VPP, RB6 (clock) and RB7 (data in/out). PCON status register is added with a Power-on Reset Status bit (POR). Brown-out protection circuitry has been added. Controlled by configuration word bits BOREN and BORV. Brown-out Reset ensures the device is placed in a Reset condition if VDD dips below a fixed setpoint.
3. 4. 5. .
2.
3. 4.
5. 6. 7. 8. 9.
Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device. 2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.
10. 11.
12. 13. 14. 15.
16. 17.
DS41206A-page 114
Preliminary
2003 Microchip Technology Inc.
PIC16F716
ON-LINE SUPPORT
Microchip provides on-line support on the Microchip World Wide Web site. The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape(R) or Microsoft(R) Internet Explorer. Files are also available for FTP download from our FTP site.
SYSTEMS INFORMATION AND UPGRADE HOT LINE
The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are: 1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world. 042003
Connecting to the Microchip Internet Web Site
The Microchip web site is available at the following URL: www.microchip.com The file transfer site is available by using an FTP service to connect to: ftp://ftp.microchip.com The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is: * Latest Microchip Press Releases * Technical Support Section with Frequently Asked Questions * Design Tips * Device Errata * Job Postings * Microchip Consultant Program Member Listing * Links to other useful web sites related to Microchip Products * Conferences for products, Development Systems, technical information and more * Listing of seminars and events
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 115
PIC16F716
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. To: RE: Technical Publications Manager Reader Response Total Pages Sent ________
From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ Application (optional): Would you like a reply? Device: PIC16F716 Questions: 1. What are the best features of this document? Y N Literature Number: DS41206A FAX: (______) _________ - _________
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS41206A-page 116
Preliminary
2003 Microchip Technology Inc.
PIC16F716
INDEX
A
A/D ...................................................................................... 49 A/D Converter Enable (ADIE Bit) ................................ 14 A/D Converter Flag (ADIF Bit) .............................. 15, 50 A/D Converter Interrupt, Configuring .......................... 50 ADCON0 Register................................................... 9, 49 ADCON1 Register................................................. 10, 50 ADRES Register ........................................................... 9 Analog Port Pins, Configuring..................................... 52 Channel Select (CHS2:CHS0 Bits) ............................. 49 Clock Select (ADCS1:ADCS0 Bits)............................. 49 Configuring the Module............................................... 50 Conversion Clock (Tad) .............................................. 52 Conversion Status (GO/DONE Bit) ....................... 49, 50 Conversions ................................................................ 53 Converter Characteristics ......................................... 104 Module On/Off (ADON Bit).......................................... 49 Port Configuration Control (PCFG2:PCFG0 Bits) ....... 50 Sampling Requirements.............................................. 51 Special Event Trigger (CCP)................................. 35, 53 Timing Diagram......................................................... 105 Absolute Maximum Ratings ................................................ 91 ADCON0 Register................................................................. 9 ADCON1 Register............................................................... 10 ADDLW Instruction ............................................................. 73 ADDWF Instruction ............................................................. 73 ADRES Register ................................................................... 9 Analog Input Model ............................................................. 51 Analog-to-Digital Converter. See A/D ANDLW Instruction ............................................................. 73 ANDWF Instruction ............................................................. 73 Assembler MPASM Assembler..................................................... 85 BOR Enable (BODEN Bit) .......................................... 56 BOR Status (BOR Bit) ................................................ 16 Timing Diagram ........................................................ 101 BSF Instruction ................................................................... 74 BTFSC Instruction .............................................................. 74 BTFSS Instruction............................................................... 75
C
C Compilers MPLAB C17................................................................ 86 MPLAB C18................................................................ 86 MPLAB C30................................................................ 86 CALL Instruction ................................................................. 75 Capture (CCP Module) ....................................................... 34 CCP Pin Configuration ............................................... 34 CCPR1H:CCPR1L Registers ..................................... 34 Software Interrupt ....................................................... 34 Timer1 Mode Selection............................................... 34 Capture/Compare/PWM (CCP) .......................................... 33 Capture Mode. See Capture CCP1CON Register...................................................... 9 CCPR1H Register .................................................. 9, 33 CCPR1L Register ................................................... 9, 33 Compare Mode. See Compare Enable (CCP1IE Bit)................................................... 14 Flag (CCP1IF Bit) ....................................................... 15 PWM Mode. See PWM Timer Resources ........................................................ 33 Timing Diagram ........................................................ 103 CLRF Instruction................................................................. 75 CLRW Instruction................................................................ 76 CLRWDT Instruction........................................................... 76 Code Examples Capture (CCP Module) Changing Between Capture Prescalers ............. 34 How to Clear RAM Using Indirect Addressing............ 18 Initializing PORTA ...................................................... 19 Initializing PORTB ...................................................... 21 Code Protection ............................................................ 55, 69 CP1:CP0 Bits.............................................................. 56 COMF Instruction................................................................ 76 Compare (CCP Module) ..................................................... 34 CCP Pin Configuration ............................................... 35 Software Interrupt ....................................................... 35 Special Event Trigger ..................................... 30, 35, 53 Timer1 Mode Selection............................................... 35 Configuration Bits ............................................................... 55 Conversion Considerations............................................... 113
B
Banking, Data Memory ................................................... 7, 11 BCF Instruction ................................................................... 74 Block Diagrams A/D .............................................................................. 51 Capture (CCP Module) ............................................... 34 Compare (CCP Module) ............................................. 35 Interrupt Sources ........................................................ 65 On-Chip Reset Circuit ................................................. 60 PIC16F716.................................................................... 5 PORTA.................................................................. 19, 20 PORTB........................................................................ 21 PWM (CCP Module) ................................................... 36 PWM (Enhanced)........................................................ 38 RB1/T1OSO/T1CKI..................................................... 22 RB2/T1OSI.................................................................. 22 RB3/CCP1/P1A........................................................... 23 RB4 ............................................................................. 23 RB5 ............................................................................. 24 RB6/P1C ..................................................................... 24 RB7/P1D ..................................................................... 25 Timer0......................................................................... 27 Timer0/WDT Prescaler ............................................... 28 Timer1......................................................................... 30 Timer2......................................................................... 32 Watchdog Timer (WDT) .............................................. 67 BOR. See Brown-out Reset Brown-out Detect (BOD) ..................................................... 59 Brown-out Reset (BOR) .................................... 55, 58, 62, 63
D
Data Memory ........................................................................ 7 Bank Select (RP1:RP0 Bits) ................................... 7, 11 General Purpose Registers .......................................... 8 Register File Map ......................................................... 8 Special Function Registers........................................... 9 DC Characteristics............................................ 93, 94, 95, 96 DECF Instruction ................................................................ 76 DECFSZ Instruction............................................................ 77 Demonstration Boards PICDEM 1................................................................... 88 PICDEM 17................................................................. 88 PICDEM 18R PIC18C601/801 ................................... 89 PICDEM 2 Plus........................................................... 88 PICDEM 3 PIC16C92X............................................... 88
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 117
PIC16F716
PICDEM 4 ................................................................... 88 PICDEM LIN PIC16C43X ........................................... 89 PICDEM USB PIC16C7X5.......................................... 89 PICDEM.net Internet/Ethernet .................................... 88 Development Support ......................................................... 85 Direct Addressing................................................................ 18 SUBWF....................................................................... 83 SWAPF ....................................................................... 83 TRIS ........................................................................... 83 XORLW ...................................................................... 84 XORWF ...................................................................... 84 Instruction Set Summary .................................................... 71 INT Interrupt (RB0/INT). See Interrupt Sources INTCON Register............................................................ 9, 13 GIE Bit ........................................................................ 13 INTE Bit ...................................................................... 13 INTF Bit ...................................................................... 13 PEIE Bit ...................................................................... 13 RBIE Bit ...................................................................... 13 RBIF Bit ...................................................................... 13 T0IE Bit ....................................................................... 13 T0IF Bit ....................................................................... 13 Interrupt Sources .......................................................... 55, 65 A/D Conversion Complete .......................................... 50 Capture Complete (CCP)............................................ 34 Compare Complete (CCP).......................................... 35 Interrupt-on-Change (RB7:RB4 ) ................................ 21 RB0/INT Pin, External................................................. 66 TMR0 Overflow..................................................... 28, 66 TMR1 Overflow..................................................... 29, 30 TMR2 to PR2 Match ................................................... 32 TMR2 to PR2 Match (PWM) ................................. 31, 36 Interrupts, Context Saving During....................................... 66 Interrupts, Enable Bits A/D Converter Enable (ADIE Bit)................................ 14 CCP1 Enable (CCP1IE Bit) .................................. 14, 34 Global Interrupt Enable (GIE Bit) .......................... 13, 65 Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit)... 13, 66 Peripheral Interrupt Enable (PEIE Bit) ........................ 13 RB0/INT Enable (INTE Bit) ......................................... 13 TMR0 Overflow Enable (T0IE Bit) .............................. 13 TMR1 Overflow Enable (TMR1IE Bit)......................... 14 TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 14 Interrupts, Flag Bits A/D Converter Flag (ADIF Bit) .............................. 15, 50 CCP1 Flag (CCP1IF Bit)....................................... 15, 34 Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit) .. 13, 66 RB0/INT Flag (INTF Bit) ............................................. 13 TMR0 Overflow Flag (T0IF Bit)............................. 13, 66 TMR1 Overflow Flag (TMR1IF Bit) ............................. 15 TMR2 to PR2 Match Flag (TMR2IF Bit)...................... 15 IORLW Instruction .............................................................. 79 IORWF Instruction .............................................................. 79
E
ECCP Auto-Shutdown ........................................................... 45 and Automatic Restart ........................................ 47 Start-up Considerations .............................................. 47 Electrical Characteristics..................................................... 91 Enhanced Capture/Compare/PWM (ECCP) PWM Mode. See PWM (ECCP Module) Enhanced CCP Auto-Shutdown.......................................... 45 Enhanced PWM Mode. See PWM (ECCP Module)............ 38 Errata .................................................................................... 3 Evaluation and Programming Tools .................................... 89 External Power-on Reset Circuit ......................................... 58
G
GOTO Instruction ................................................................ 77
I
I/O Ports .............................................................................. 19 ID Locations .................................................................. 55, 69 INCF Instruction .................................................................. 78 INCFSZ Instruction.............................................................. 78 In-Circuit Serial Programming (ICSP) ........................... 55, 69 Indirect Addressing ............................................................. 18 FSR Register ...................................................... 8, 9, 18 INDF Register ............................................................... 9 Instruction Set ADDLW ....................................................................... 73 ADDWF ....................................................................... 73 ANDLW ....................................................................... 73 ANDWF ....................................................................... 73 BCF ............................................................................. 74 BSF ............................................................................. 74 BTFSC ........................................................................ 74 BTFSS ........................................................................ 75 CALL ........................................................................... 75 CLRF........................................................................... 75 CLRW ......................................................................... 76 CLRWDT..................................................................... 76 COMF ......................................................................... 76 DECF .......................................................................... 76 DECFSZ...................................................................... 77 GOTO ......................................................................... 77 INCF............................................................................ 78 INCFSZ ....................................................................... 78 IORLW ........................................................................ 79 IORWF ........................................................................ 79 MOVF.......................................................................... 79 MOVLW ...................................................................... 79 MOVWF ...................................................................... 80 NOP ............................................................................ 80 OPTION ...................................................................... 80 RETFIE ....................................................................... 80 RETLW ....................................................................... 81 RETURN ..................................................................... 81 RLF ............................................................................. 81 RRF............................................................................. 82 SLEEP ........................................................................ 82 SUBLW ....................................................................... 82
M
Master Clear (MCLR) MCLR Reset, Normal Operation..................... 58, 62, 63 MCLR Reset, Sleep ........................................ 58, 62, 63 Memory Organization Data Memory ................................................................ 7 Program Memory .......................................................... 7 Migration from Base-Line to Mid-Range Devices ............. 114 MOVF Instruction................................................................ 79 MOVLW Instruction............................................................. 79 MOVWF Instruction ............................................................ 80 MPLAB ASM30 Assembler, Linker, Librarian ..................... 86 MPLAB ICD 2 In-Circuit Debugger ..................................... 87 MPLAB ICE 2000 High Performance Universal In-Circuit Emulator ...................................................... 87 MPLAB ICE 4000 High Performance Universal In-Circuit Emulator ...................................................... 87
DS41206A-page 118
Preliminary
2003 Microchip Technology Inc.
PIC16F716
MPLAB Integrated Development Environment Software .... 85 MPLINK Object Linker/MPLIB Object Librarian .................. 86
N
NOP Instruction................................................................... 80
O
OPTION Instruction............................................................. 80 OPTION_REG Register ................................................ 10, 12 INTEDG Bit ................................................................. 12 PS2:PS0 Bits ........................................................ 12, 27 PSA Bit.................................................................. 12, 27 RBPU Bit..................................................................... 12 T0CS Bit................................................................ 12, 27 T0SE Bit................................................................ 12, 27 Oscillator Configuration................................................. 55, 57 HS ......................................................................... 57, 62 LP.......................................................................... 57, 62 RC................................................................... 57, 58, 62 Selection (FOSC1:FOSC0 Bits).................................. 56 XT ......................................................................... 57, 62 Oscillator, Timer1 .......................................................... 29, 30 Oscillator, WDT ................................................................... 67
P
Packaging ......................................................................... 109 Paging, Program Memory ............................................... 7, 17 PCON Register ............................................................. 16, 62 BOR Bit ....................................................................... 16 POR Bit ....................................................................... 16 PICkit 1 FLASH Starter Kit .................................................. 89 PICSTART Plus Development Programmer ....................... 87 PIE1 Register ................................................................ 10, 14 ADIE Bit ...................................................................... 14 CCP1IE Bit.................................................................. 14 TMR1IE Bit.................................................................. 14 TMR2IE Bit.................................................................. 14 PIR1 Register.................................................................. 9, 15 ADIF Bit....................................................................... 15 CCP1IF Bit .................................................................. 15 TMR1IF Bit.................................................................. 15 TMR2IF Bit.................................................................. 15 Pointer, FSR ....................................................................... 18 POR. See Power-on Reset PORTA PORTA Register ..................................................... 9, 19 TRISA Register ..................................................... 10, 19 PORTB PORTB Register ..................................................... 9, 21 Pull-up Enable (RBPU Bit) .......................................... 12 RB0/INT Edge Select (INTEDG Bit)............................ 12 RB0/INT Pin, External................................................. 66 RB7:RB4 Interrupt-on-Change.................................... 66 RB7:RB4 Interrupt-on-Change Enable (RBIE Bit) ...................................................... 13, 66 RB7:RB4 Interrupt-on-Change Flag (RBIF Bit)........... 66 TRISB Register ..................................................... 10, 21 Postscaler, Timer2 Select (TOUTPS3:TOUTPS0 Bits) ............................. 31 Postscaler, WDT ................................................................. 27 Assignment (PSA Bit) ........................................... 12, 27 Rate Select (PS2:PS0 Bits) .................................. 12, 27 Switching Between Timer0 and WDT ......................... 28 Power-down Mode. See Sleep Power-on Reset (POR) ..................................... 55, 58, 62, 63 Oscillator Start-up Timer (OST) ............................ 55, 59
POR Status (POR Bit) ................................................ 16 Power Control (PCON) Register................................. 62 Power-down (PD Bit) ............................................ 11, 58 Power-on Reset Circuit, External ............................... 58 Power-up Timer (PWRT) ...................................... 55, 59 PWRT Enable (PWRTE Bit) ....................................... 56 Time-out (TO Bit).................................................. 11, 58 Time-out Sequence .................................................... 62 Time-out Sequence on Power-up............................... 64 Timing Diagram ........................................................ 101 Prescaler, Capture.............................................................. 34 Prescaler, Timer0 ............................................................... 27 Assignment (PSA Bit) ........................................... 12, 27 Rate Select (PS2:PS0 Bits) .................................. 12, 27 Switching Between Timer0 and WDT ......................... 28 Prescaler, Timer1 ............................................................... 30 Select (T1CKPS1:T1CKPS0 Bits) .............................. 29 Prescaler, Timer2 ............................................................... 37 Select (T2CKPS1:T2CKPS0 Bits) .............................. 31 PRO MATE II Universal Device Programmer ..................... 87 Program Counter PCL Register .......................................................... 9, 17 PCLATH Register ............................................. 9, 17, 66 Reset Conditions ........................................................ 62 Program Memory .................................................................. 7 Interrupt Vector............................................................. 7 Paging .................................................................... 7, 17 Program Memory Map.................................................. 7 Reset Vector................................................................. 7 Program Verification ........................................................... 69 PWM (CCP Module) ........................................................... 36 CCPR1H:CCPR1L Registers ..................................... 36 Duty Cycle .................................................................. 37 Example Frequencies/Resolutions ............................. 37 Output Diagram .......................................................... 36 Period ......................................................................... 36 Set-Up for PWM Operation......................................... 37 TMR2 to PR2 Match ............................................. 31, 36 TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 14 TMR2 to PR2 Match Flag (TMR2IF Bit) ..................... 15 PWM (ECCP Module)......................................................... 38 Associated Registers.................................................. 48 Direction Change in Full-Bridge Output Mode............ 43 Effects of Reset .......................................................... 48 Full-Bridge Application Example................................. 43 Full-Bridge Mode ........................................................ 43 Half-Bridge Mode........................................................ 42 Half-Bridge Output Mode Applications Example ........ 42 Output Configurations................................................. 38 Output Relationships (Active High and Low) .............. 40 Output Relationships (Active-High and Low).............. 39 Output Relationships Diagram.............................. 39, 41 Programmable Dead-band Delay ............................... 45 Setup for Operation .................................................... 48 Shoot-through Current ................................................ 45 Start-up Considerations .............................................. 47
Q
Q-Clock....................................................................... 37, 100
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 119
PIC16F716
R
RA3:RA0 ............................................................................. 19 RA4/T0CKI Pin.................................................................... 20 RAM. See Data Memory. RB0 Pin ............................................................................... 21 Register File .......................................................................... 8 Register File Map .................................................................. 8 Registers A/D ADCON0 .............................................................. 49 A/D ADCON1 .............................................................. 49 A/D ADRES........................................................... 49, 50 ADCON0 ADCS1:ADCS0 Bits .................................... 49 ADCON0 ADON Bit .................................................... 49 ADCON0 CHS2:CHS0 Bits ......................................... 49 ADCON0 GO/DONE Bit ........................................ 49, 50 ADCON1 PCFG2:PCFG0 Bits .................................... 50 CCP1CON CCP1M3:CCP1M0 Bits ............................ 33 CCP1CON CCP1X:CCP1Y Bits ................................. 33 Compare (CCP Module) CCPR1H:CCPR1L .............................................. 34 INTCON Register RBIF.................................................................... 21 PWM1CON (Enhanced PWM Configuration) ............. 46 T1CON Register T1CKPS1:T1CKPS0 Bits .................................... 29 T1OSCEN Bit...................................................... 29 T1SYNC Bit......................................................... 29 TMR1CS Bit ........................................................ 29 TMR1ON Bit........................................................ 29 T2CON Register T2CKPS1:T2CKPS0 Bits ................ 31 T2CON Register TMR2ON Bit .................................... 31 T2CON Register TOUTPS3:TOUTPS0 Bits ............... 31 Timer2 PR2 ..................................................................... 36 Timer2 PR2 Register .................................................. 31 Timer2 TMR2 Register................................................ 31 TMR1H Timer1 Register ............................................. 29 TMR1L Timer1 Register.............................................. 29 Reset............................................................................. 55, 58 Brown-out Reset (BOR). See Brown-out Reset (BOR) MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (POR) Reset Conditions for PCON Register.......................... 62 Reset Conditions for Program Counter ....................... 62 Reset Conditions for Status Register .......................... 62 Timing Diagram......................................................... 101 WDT Reset. See Watchdog Timer (WDT) RETFIE Instruction.............................................................. 80 RETLW Instruction .............................................................. 81 RETURN Instruction............................................................ 81 Revision History ................................................................ 113 RLF Instruction.................................................................... 81 RRF Instruction ................................................................... 82 Status Register ............................................................... 9, 66 C Bit ............................................................................ 11 DC Bit ......................................................................... 11 IRP Bit ........................................................................ 11 PD Bit ................................................................... 11, 58 RP1:RP0 Bits.............................................................. 11 TO Bit ................................................................... 11, 58 Z Bit ............................................................................ 11 SUBLW Instruction ............................................................. 82 SUBWF Instruction ............................................................. 83 SWAPF Instruction ............................................................. 83
T
T1CON Register ................................................................... 9 T2CON Register ................................................................... 9 Timer0................................................................................. 27 Clock Source Edge Select (T0SE Bit) .................. 12, 27 Clock Source Select (T0CS Bit)............................ 12, 27 Overflow Enable (T0IE Bit) ......................................... 13 Overflow Flag (T0IF Bit)........................................ 13, 66 Overflow Interrupt ................................................. 28, 66 Prescaler. See Prescaler, Timer0 Timing Diagram ........................................................ 102 TMR0 Register.............................................................. 9 Timer1................................................................................. 29 Clock Source Select (TMR1CS Bit) ............................ 29 External Clock Input Sync (T1SYNC Bit).................... 29 Module On/Off (TMR1ON Bit)..................................... 29 Oscillator............................................................... 29, 30 Oscillator Enable (T1OSCEN Bit) ............................... 29 Overflow Enable (TMR1IE Bit).................................... 14 Overflow Flag (TMR1IF Bit) ........................................ 15 Overflow Interrupt ................................................. 29, 30 Prescaler. See Prescaler, Timer1 Special Event Trigger (CCP) ................................ 30, 35 T1CON Register ........................................................... 9 Timing Diagram ........................................................ 102 TMR1H Register ........................................................... 9 TMR1L Register............................................................ 9 Timer2 Postscaler. See Postscaler, Timer2 PR2 Register .............................................................. 10 Prescaler. See Prescaler, Timer2 T2CON Register ........................................................... 9 TMR2 Register.............................................................. 9 TMR2 to PR2 Match Enable (TMR2IE Bit) ................. 14 TMR2 to PR2 Match Flag (TMR2IF Bit)...................... 15 TMR2 to PR2 Match Interrupt......................... 31, 32, 36 Timing Diagrams Half-Bridge PWM Output ............................................ 42 PWM Auto-Shutdown (PRSEN = 0, Auto-Restart Disabled) ............................................................ 47 PWM Auto-Shutdown (PRSEN = 1, Auto-Restart Enabled) ............................................................. 47 PWM Direction Change .............................................. 44 PWM Direction Change at Near 100% Duty Cycle..... 44 Time-out Sequence on Power-up ............................... 64 Wake-up from Sleep via Interrupt ............................... 69 Timing Diagrams and Specifications .................................. 98 A/D Conversion......................................................... 105 Brown-out Reset (BOR)............................................ 101 Capture/Compare/PWM (CCP) ................................ 103 CLKOUT and I/O ...................................................... 100 External Clock............................................................. 98 Oscillator Start-up Timer (OST) ................................ 101 Power-up Timer (PWRT) .......................................... 101
S
Shoot-through Current ........................................................ 45 Sleep ....................................................................... 55, 58, 68 Sleep Instruction ................................................................. 82 Software Simulator (MPLAB SIM)....................................... 86 Software Simulator (MPLAB SIM30)................................... 86 Special Event Trigger. See Compare Special Features of the CPU............................................... 55 Special Function Registers ................................................... 9 Speed, Operating .................................................................. 1 Stack ................................................................................... 17
DS41206A-page 120
Preliminary
2003 Microchip Technology Inc.
PIC16F716
Reset......................................................................... 101 Timer0 and Timer1.................................................... 102 Watchdog Timer (WDT) ............................................ 101 TRIS Instruction .................................................................. 83
W
W Register .......................................................................... 66 Wake-up from Sleep ..................................................... 55, 68 Interrupts............................................................... 62, 63 MCLR Reset ............................................................... 63 Timing Diagram........................................................... 69 WDT Reset ................................................................. 63 Watchdog Timer (WDT) ................................................ 55, 67 Enable (WDTE Bit)................................................ 56, 67 Postscaler. See Postscaler, WDT Programming Considerations ..................................... 67 RC Oscillator............................................................... 67 Time-out Period .......................................................... 67 Timing Diagram......................................................... 101 WDT Reset, Normal Operation ....................... 58, 62, 63 WDT Reset, Sleep .......................................... 58, 62, 63 WWW, On-Line Support ....................................................... 3
X
XORLW Instruction ............................................................. 84 XORWF Instruction ............................................................. 84
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 121
PIC16F716
NOTES:
DS41206A-page 122
Preliminary
2003 Microchip Technology Inc.
PIC16F716
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X Temperature Range /XX Package XXX Pattern Examples:
a) b) Device PIC16F716, PIC16F716T, VDD range 2.0V to 5.5V PIC16F716 -I/P 301= Industrial temp., PDIP package, QTP pattern #301. PIC16F716 - E/SO = Extended temp, SOIC package
Temperature Range
I E
= -40C to +85C = -40C to +125C
(Industrial) (Extended)
Package
SO P SS
= = =
SOIC PDIP SSOP
Pattern
QTP, SQTP, Code or Special Requirements (blank otherwise)
Note
1:
T = in tape and reel SOIC and SSOP packages only.
Sales and Support
Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. 2. 3. Your local Microchip sales office The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. New Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
2003 Microchip Technology Inc.
Preliminary
DS41206A-page 123
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office
2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com
ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
Korea
168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934
Singapore
200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850
China - Beijing
Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104
Atlanta
3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307
Taiwan
Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4818 Fax: 886-7-536-4803
Boston
2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821
China - Chengdu
Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599
Taiwan
Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Chicago
333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075
China - Fuzhou
Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521
Dallas
4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924
EUROPE
Austria
Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431
Detroit
Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260
Denmark
Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910
China - Shanghai
Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Kokomo
2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387
France
Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Los Angeles
18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-8295-1393
Germany
Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44
Phoenix
2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338
China - Shunde
Room 401, Hongjian Building No. 2 Fengxiangnan Road, Ronggui Town Shunde City, Guangdong 528303, China Tel: 86-765-8395507 Fax: 86-765-8395571
Italy
Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781
San Jose
2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955
China - Qingdao
Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205
Netherlands
P. A. De Biesbosch 14 NL-5152 SC Drunen, Netherlands Tel: 31-416-690399 Fax: 31-416-690340
Toronto
6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509
India
Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062
United Kingdom
505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820
07/28/03
Japan
Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122
DS41206A-page 124
Preliminary
2003 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of PIC16F716

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X